
 SafeRV : Shakti Functional Safety Architecture
Building Blocks for Safety Critical RISC-V Systems

Paul George & Vipul Vaidya

10/10/2019

SHAKTI Group | CSE Dept | RISE Lab | IIT Madras

Contributors

● Neel Gala
● Vipul Vaidya
● Rishabh Jain
● Paul George
● Rahul Bodduna
● Anmol Sahoo

2

Outline

- Motivation
- Shakti - Thales Safe-RV Avionics
- C-Class Core Enhancements
- System Enhancements for Timing Critical/Certainty Applications
- Fault Tolerance Primer

- Shakti C-Class TLS
- Network-on-Chip for Mixed Critical Systems

3

Motivation: Mixed Critical x Real time x Fault-Tolerant

● Enabling applications in automotive, industrial control, avionics & space.

[Fig.] S. Tobuschat, "Predictable and Runtime-Adaptable Network-On-Chip for Mixed-Critical Real-time Systems" ,TU Braunschweig, 2019 4

Shakti - Thales Safe RV Mixed Critical SoC

8 x Fault Tolerant C-Class
RV64GC - Dedicated L1D/I

1x E-Class RV64IMC -
Monitor Core

Criticality Aware - Latency
Characterised Interconnect
NOC

Banked distributed shared
L2 Cache . MSI/MESI -
Directory Based Cache
Coherence protocol

5

Time Bound Solutions

6

Tightly-coupled Memory (TCM)

7

● Per Core
● Will be implemented independent of Caches
● Accessed simultaneously with the Caches (separate address range)
● Separate Scratchpad for Instruction and Data

● Cache locking supported in addition
○ Lock up to 2 out of 4 ways

● Cache replacement policy
○ Deterministic! No random! (WCET)
○ Round-Robin chosen for all caches

aka Tightly-integrated Memory (TIM)

System Counters

8

● Events / Registers
○ Interconnect read/write filtered by

■ source,
■ target and
■ address range

○ Same for Memory controller
○ Voltage
○ Temperatuure

● System events monitorable from Monitoring Core only
● Per-CPU counters are readable from Monitoring core without impacting that core‘s

execution speed (WIP)

System

Performance Counters

9

● Needed for Analysis (WCET), but also for runtime-monitoring
● > 25 events defined per core, e.g. count the number of

○ L1-I or L1-D cache misses and accesses
○ Conditional branches and unconditional jumps
○ Atomic instructions
○ CSR operations
○ Exceptions and Interrupts
○ Accessible without performance costs with the C-Class Daisy chained CSR file.

Per-Core

Core Functional Timing Predictability

10

● Timing predictability:
○ Shakti Multiplier was originally an „early-out“ multiplier with 1-8 cycles depending on input
○ Replaced by a constant-cycle multiplier

Fault Tolerance

11

Fault Models

Fault Model = type of error x bit error rate x number of simultaneous errors allowed.

● Type of Errors
○ Single Event Upsets
○ Single Event Transients
○ Permanent Faults - Latchup - Analog sensors required.

● Number of simultaneous errors allowed = 1
● Bit Error Rate ::

○ Depends on Process Technology and operating conditions (derating factors).

Reliability Target.

● MAX :: 100 FIT :: 100 Failures in 10^9 Hours. (Terrestrial - w/o Altitude Derating)

The Solutions will be restricted to micro architectural changes only .No Assumptions
assumptions wrt. Cell Level Strategies , Rad Hard Cells , Timing and Clock Tree
vulnerability Mitigation with C-Elements , Clock Source/Tree Diversity made.

12

Architectural Vulnerability Factor - (S. Mukherjee Intel)

Architectural vulnerability analysis is one of the key techniques to identify candidate
hardware structures that need protection from soft errors.

The AVF of every hardware structure on a chip is also necessary to compute the full-chip
FIT rates.

FIT = AVF * Intrinsic Failure Rate of Process Technology * Environmental Deration Factor

AVF ~= Average System Bandwidth used by Architecturally Correct (& Relevant) Execution

13

Fault Tolerance : TLS Cores
Baseline Solution - Core Complex

14

Vanilla C-Class Embedded Core

15

C-Class TLS :: Initial Draft

Micro Architectural Features :

● Triplicated Core Pipeline
○ Voted Outputs
○ Lazy State Monitoring (minimize Latent Errors)
○ ISR based resynchronization

● Architecturally Enhanced Imem, Dmem , Cache Controller for FT.
○ SECDED ECC on all Storage Elements.
○ Parity on all inflight Data.
○ One Hot Encoded FSMs with Fail Traps and Timeouts.

● Core local Reliability Root Node enabling strategic handling of faults.

16

TLS

17

Triple
Lock-Stepped
C- Class
Core Complex

TLS :: ERROR DETECTION

TLS Core Complex Error Sources

● Pipeline to Imem
● Pipeline to Dmem
● Pipeline to Sideband
● Pipeline Interface Control Signal Mismatch and Timeout
● Pipeline to Lazy Monitoring
● Imem Internal State
● Dmem Internal State
● Cache Controller Internal State
● Core Complex - Interconnect Faults
● Core Complex - State Corruption

18

Core Local Reliability Root Node

● Allows system software to perform a strategic role in recovery from and diagnosis
of hardware errors.

● All Corrected, deferred, and uncorrected errors are logged. Enabled/Non-Maskable
errors raise Machine Check exceptions.

○ Corrected :: Self Corrected by ECC
○ Deferred :: Error Detected , Resynchronization pending , Core in degraded resilience
○ Uncorrected :: Non Recoverable State Loss.

● Reconfigurable Event Specific Resynchronization and Scrubbing Routines.
● Configurable Error Thresholding.
● Events banked by source
● Communicates fatal errors to the monitor core.

19

TLS :: Pipeline Resynchronization

Error Detection at the pipeline output voters requires resynchronization for continued
high resilience operation. It is achieved with the following ISRs.

● SAVE :: Creates an image of the Core Architectural State (GPRs, FPRs , CSRs , PC) .
Reuses Pipeline Voters by performing store ops to Core Local TCM.

● RESTORE :: Restore Core Architectural State from Core Local TCM.

Additional Behavior :: (Depending on the nature of the error / Configuration)

● RESET :: Checkpointed pipelines can optionally be reset to flush errors in
unreachable micro-architectural state variables.

● DEFER :: Disable a faulty Pipeline and operate in degraded resiliency mode.

20

Fault Tolerance Verification Strategy

Functional Verification Through Statistical fault injection on Elaborated Verilog Netlist.

Results drive AVF estimation enabling redundancy optimization to meet performance
and reliability requirements.

21

Full DMR - C-Class Pipeline

22

Hardened Frontend - TMR - Exe - Mem -WC Cluster

23

Hardened Frontend - Double Modular Redundant Exe-Mem-WB Cluster

24

Hardened Frontend - Double Modular Functional Units in Exe - Mem - WB cluster

25

Fully Hardened C-Class Core Pipeline

Parity
Predicted
Functional
units

26

References :: Fault Tolerance : TLS Cores
[1] Mukherjee S. - Architecture Design for Soft Errors
[2] Sorin D. - Fault Tolerant Computer Architecture - Synthesis Lectures on Computer Architecture #5.
[3] Xabier Iturbe et al. - The Arm Triple Core Lock-Step (TCLS) Processor - ACM Transactions on Computer Systems, Vol. 36, No. 3, Article 7.
Publication date: June 2019.
[4] AMD inc. - BKDG: Bios Kernel Developer's Guide - AMD_Family_15h_Models_70h-7Fh_BKDG

[5] Federal Aviation Administration - Single Event Effects Mitigation Techniques Report - DOT/FAA/TC-15/62

27

NoC for Mixed Critical Systems (MCS)

● MCS are characterized by levels of criticality among the applications running on
them, Typically :- High Critical & Low critical.

● It is required that the High Critical tasks are provided bounded latencies while the
Low critical ones can tolerate some degradation in doing so.

● Apart from the core, the interconnection fabric should also be deterministic,
meaning it should provide an upper bound on the latencies of packets from critical
tasks.

● Aim is to extend an NoC with wormhole flow control to incorporate notion of
criticality.

● We borrow ideas from the paper WPMC Flood [1] :- It models the latency of flows
over an enhanced wormhole NoC and performs WCET and schedulability analysis.

● They also perform simulations to correlate their results with the analysis.

[1] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case latency improvements in mixed-criticality wormhole networks-on-chip,”
28

Packetization in an NoC

● Network Interface breaks a message into packets consisting of fixed sized flits.
● Link width determines flit size, packet can contain variable no. of flits :-

Control message - 1 flit , Data message - 5 flits

● The header flit has information like route info, VC ID.
● Wormhole flow control :The body flits follow the head in pipelined fashion, the header can

perform a hop without other flits being present at the input port buffer.
[Fig. : Dr. Leandro Indrusiak, ECRTS 2017]

29

Wormhole NoC

● Typically each input port of router will have multiple buffers called Virtual Channels
to store incoming flits.

● The VCs can be grouped into Virtual Nets (Vnet), each for a particular message class.
● Necessary to avoid protocol level deadlocks.

● A conventional Router has following stages
○ Buffer Write
○ Route Computation
○ VC Allocation
○ Switch Allocation
○ Buffer Read
○ Switch Traversal
○ Link Traversal

[Reference : Dr. Tushar Krisha, 2017 gem5 workshop, ARM Research Summit]

[Reference : Dr. Tushar Krisha, 2017 gem5 workshop, ARM Research Summit]

30

 Notion of Criticality in the Router
Addi
Adding criticality to the VCs

● We assign criticalities to each VCs, namely HI (high critical) and LO(low critical).
● The Network interface while injecting makes sure that packets occupy VCs

corresponding to their criticality.
● Assignation of criticalities can be programmable by using 1-bit registers

corresponding to each VC.

An input port having say 4 VCs would look like following :-

 VC0 (HI)

 VC1 (HI)

 VC2 (LO)

 VC3 (LO)

31

Notion of Criticality in the Router

Criticality of a Network Link/Router

● The criticality of link affects how input & output port arbitration is done.
● Each flow is characterized by parameters like injection rate , message size etc.
● High critical flows have predefined values for these parameters (HI-crit definition) to

determine criticality of the link. [2]
● A link would be by default in LO-crit mode.
● If high critical flow is within its HI-crit definition, then link stays in LO-crit mode. If

not, the routers and its links switch to HI-crit mode.
● This information for mode change is embedded in the header so that the router is

notified & this info propagates as the flit travels.

32

[2] A. Burns, J. Harbin, L.S. Indrusiak, "A Wormhole NoC Protocol for Mixed Criticality Systems", RTSS

Notion of criticality in Router

Arbitration

● In LO-crit mode, a round-robin policy is used among all VCs irrespective of criticality.
● In HI-crit mode, priority is given to the HI-crit VCs over LO-crit ones, while using RR

among the HI-crit VCs.
● Similar policy is used at outport arbitration.
● If HI-crit packets are blocked due to unavailability of buffers at downstream router,

LO-crit packets would make progress.

Credit Management

● Separate credit management for HI-crit & LO-crit VCs.
● This ensures HI-crit packets flow only through HI-crit VCs.

33

NoC Modeling - Gem5

Garnet2.0

● Detailed interconnection model in Gem5 for simulating, modelling and exploring
Network-On-Chips.

● Provides a cycle-accurate router and link model with parameterizable latency.
● Able to model various topologies and routing algorithms.
● Parameterizable over -

○ Number of Virtual Channels
○ Depth of Virtual Channel buffers
○ Link width etc.
○ Injection rate etc.

et al. Agarwal, 2009: “GARNET: A detailed on-chip network model inside a full-system simulator” 34

Garnet2.0

● The garnet system model comprises of -
○ Routers
○ Data & Credit Links
○ Directory Controller
○ Core + Private L1 Cache
○ Distributed Shared L2 Cache
○ Other controllers (Eg: DMA)

● Synthetic Traffic Generator :-
○ Uniform Random
○ Other Synthetic Patterns

[Reference : Dr. Tushar Krisha, 2017 gem5 workshop, ARM Research Summit]
35

System Overview Garnet

Observation and Results:

● Average latency and maximum latency comparison:
● VNET2 is a message class, where packet size is 5 flit (data message).
● Criticality assignment would be as following :-

An input port having say 4 VCs (VNET2)

 VC8 (HI)

 VC9 (HI)

 VC10 (LO)

 VC11 (LO)

36

baseline(VNET2) Scheme(VC 8-9)
High Critical

Scheme(VC 10-11)
Low Critical

Average latency 33.90 20.19 36.19

Maximum latency 366 81 416

Garnet - Modelling a NoC

Network Configuration :

● 1-cycle Router
● Topology : 4*4 Mesh
● Routing : XY (DOR)- Deterministic in nature.
● Simulation cycles : 10,000
● Flow control : Wormhole with VCs
● Injection rate : 0.24
● Traffic pattern : uniform_random
● Link criticality : High

Assigning criticality to VCs in each VNET :

● Facilitates criticality usage in each message class.
● Eg:- a high critical Load request from core to memory.
● Similarly, the response will travel from memory to core in HI-crit VCs only.

37

Results: Priority to HI-Crit VCs

38

● Compared to VNET2_baseline, tail latency of VCs 8-9 has come down drastically.
● Tail latency of VCs 10-11 has degraded w.r.t baseline case.

NoC Generator : OpenSMART
● Can generate RTL for a network configuration like number of VCs, routing algorithm, topology,

router pipeline stages, etc.

● Interface between NI and core will be via TileLink transactors.
● Implemented FPGA synthesizable LFSR modules for traffic generation to stress test NoC.

et al. H Kwon, 2017: “OpenSMART: Single-cycle multi-hop NoC generator in BSV and Chisel” 39

Language Bluespec, Chisel

Flow Control Wormhole with VCs

Topology Mesh, Look-ahead XY routing

Buffer Management Credit

Router Microarchitecture 1 cycle/2 cycle , SMART

Packet size 1 flit

Traffic Generator support/Stress Test Uniform_random, Bit_complement

WIP/Future Work

● Modelling traffic in Gem5 to create hot modules to increase interference.
● Implementing Multi-flit packet support in OpenSmart.
● Incorporating criticality in OpenSMART routers.
● Modifying NI to insert packets into appropriate VCs.
● Run-time monitoring of flow parameters at NI to determine link criticality.
● Preventing degradation of low critical packets by methods such as resetting link

criticality, slack aware arbitration [3].
● Performance counters.

[3] S. Tobuschat, R. Ernst, "Efficient latency guarantees for mixed-criticality networks-on-chip", RTAS 2017 40

Cache Coherence

● Using ProtoGen [4] to generate cache and directory controller state machine.
● ProtoGen takes a Stable State Protocol (SSP) and generates concurrent, safety and

deadlock free state machine.
● By default, it supports generation of MSI, MESI & MOSI protocols.
● We plan to explore time predictable coherence protocols and use Protogen to

generate the controllers.

[4] et al. N. Oswald, ProtoGen:Automatically Generating Directory Cache Coherence Protocols from Atomic Specifications, ISCA 2018

41

Thank you

Repositories

Gem5: https://gitlab.com/shaktiproject/tools/shakti-gem5

OpenSMART: https://gitlab.com/shaktiproject/uncore/OpenSMART

Shakti TLS : https://gitlab.com/shaktiproject/cores/c-class/tree/136-c-class-tls

https://gitlab.com/shaktiproject/tools/shakti-gem5
https://gitlab.com/shaktiproject/uncore/OpenSMART
https://gitlab.com/shaktiproject/cores/c-class/tree/136-c-class-tls

