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Motivation: Mixed Critical x Real time x Fault-Tolerant

● Enabling applications in automotive, industrial control, avionics & space.

[Fig.] S. Tobuschat, "Predictable and Runtime-Adaptable Network-On-Chip for Mixed-Critical Real-time Systems" ,TU Braunschweig, 2019 4



Shakti - Thales Safe RV Mixed Critical SoC

8 x Fault Tolerant C-Class 
RV64GC - Dedicated L1D/I 

1x E-Class RV64IMC - 
Monitor Core

Criticality Aware - Latency 
Characterised Interconnect 
NOC

Banked distributed shared 
L2 Cache . MSI/MESI - 
Directory Based Cache 
Coherence protocol 
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Time Bound Solutions
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Tightly-coupled Memory (TCM)
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● Per Core
● Will be implemented independent of Caches
● Accessed simultaneously with the Caches (separate address range)
● Separate Scratchpad for Instruction and Data

● Cache locking supported in addition
○ Lock up to 2 out of 4 ways

● Cache replacement policy
○ Deterministic! No random! (WCET)
○ Round-Robin chosen for all caches

aka Tightly-integrated Memory (TIM)



System Counters
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● Events / Registers
○ Interconnect read/write filtered by

■ source,
■ target and
■ address range

○ Same for Memory controller
○ Voltage
○ Temperatuure

● System events monitorable from Monitoring Core only
● Per-CPU counters are readable from Monitoring core without impacting that core‘s 

execution speed (WIP)

System



Performance Counters
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● Needed for Analysis (WCET), but also for runtime-monitoring
● > 25 events defined per core, e.g. count the number of

○ L1-I or L1-D cache misses and accesses
○ Conditional branches and unconditional jumps
○ Atomic instructions
○ CSR operations
○ Exceptions and Interrupts
○ Accessible without performance costs with the C-Class Daisy chained CSR file.

Per-Core



Core Functional Timing Predictability
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● Timing predictability:
○ Shakti Multiplier was originally an „early-out“ multiplier with 1-8 cycles depending on input
○ Replaced by a constant-cycle multiplier



Fault Tolerance
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Fault Models

Fault Model = type of error x bit error rate x number of simultaneous errors allowed.

● Type of Errors
○ Single Event Upsets
○ Single Event Transients
○ Permanent Faults - Latchup - Analog sensors required.

● Number of simultaneous errors allowed = 1
● Bit Error Rate :: 

○ Depends on Process Technology and operating conditions (derating factors).

Reliability Target.

● MAX :: 100 FIT :: 100 Failures in 10^9 Hours. ( Terrestrial - w/o Altitude Derating )

The Solutions will be restricted to micro architectural changes only .No Assumptions 
assumptions wrt. Cell Level Strategies , Rad Hard Cells , Timing and Clock Tree 
vulnerability Mitigation with C-Elements , Clock Source/Tree Diversity made.
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Architectural Vulnerability Factor - ( S. Mukherjee Intel )

Architectural vulnerability analysis is one of the key techniques to identify candidate 
hardware structures that need protection from soft errors. 

The AVF of every hardware structure on a chip is also necessary to compute the full-chip 
FIT rates.

FIT = AVF * Intrinsic Failure Rate of Process Technology  * Environmental Deration Factor

AVF ~= Average System Bandwidth used by Architecturally Correct (& Relevant ) Execution
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Fault Tolerance : TLS Cores
Baseline Solution - Core Complex
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Vanilla C-Class Embedded Core
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C-Class TLS :: Initial Draft

Micro Architectural Features : 

● Triplicated Core Pipeline
○ Voted Outputs
○ Lazy State Monitoring (minimize Latent Errors)
○ ISR based resynchronization

● Architecturally Enhanced Imem,  Dmem , Cache Controller  for FT.
○ SECDED ECC on all Storage Elements.
○ Parity on all inflight Data.
○ One Hot Encoded FSMs with Fail Traps and Timeouts.

● Core local Reliability Root Node enabling strategic handling of faults.
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TLS
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Triple 
Lock-Stepped 
C- Class 
Core Complex



TLS :: ERROR DETECTION

TLS Core Complex Error Sources 

● Pipeline to Imem 
● Pipeline to Dmem
● Pipeline to Sideband
● Pipeline Interface Control Signal Mismatch and Timeout
● Pipeline to Lazy Monitoring
● Imem Internal State
● Dmem Internal State
● Cache Controller Internal State
● Core Complex - Interconnect Faults
● Core Complex - State Corruption
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Core Local Reliability Root Node

● Allows system software to perform a strategic role in recovery from and diagnosis 
of hardware errors.

● All Corrected, deferred, and uncorrected errors are logged. Enabled/Non-Maskable 
errors raise Machine Check exceptions.

○ Corrected :: Self Corrected by ECC
○ Deferred :: Error Detected , Resynchronization pending , Core in degraded resilience
○ Uncorrected :: Non Recoverable State Loss.

● Reconfigurable Event Specific Resynchronization and Scrubbing Routines.
● Configurable Error Thresholding.
● Events banked by source
● Communicates fatal errors to the monitor core.
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TLS :: Pipeline Resynchronization

Error Detection at the pipeline output voters requires resynchronization for continued 
high resilience operation. It is achieved with the following ISRs.

● SAVE :: Creates an image of the Core Architectural State (GPRs, FPRs , CSRs , PC ) . 
Reuses Pipeline Voters by performing store ops to Core Local TCM.

● RESTORE :: Restore Core Architectural State from Core Local TCM.

Additional Behavior :: ( Depending on the nature of the error / Configuration )

● RESET :: Checkpointed pipelines can optionally be reset to flush errors in 
unreachable micro-architectural state variables.

● DEFER :: Disable a faulty Pipeline and operate in degraded resiliency mode.
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Fault Tolerance Verification Strategy

Functional Verification Through Statistical fault injection on Elaborated Verilog Netlist.

Results drive AVF estimation enabling redundancy optimization to meet performance 
and reliability requirements.
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Full DMR - C-Class Pipeline
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Hardened Frontend - TMR - Exe - Mem -WC Cluster
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Hardened Frontend - Double Modular Redundant Exe-Mem-WB Cluster 
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Hardened Frontend - Double Modular Functional Units in Exe - Mem  - WB cluster
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Fully Hardened C-Class Core Pipeline

Parity 
Predicted 
Functional 
units
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References :: Fault Tolerance : TLS Cores
[1] Mukherjee S. -  Architecture Design for Soft Errors
[2] Sorin D.  - Fault Tolerant Computer Architecture  - Synthesis Lectures on Computer Architecture #5.
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NoC for Mixed Critical Systems (MCS)

● MCS are characterized by levels of criticality among the applications running on 
them,  Typically :- High Critical & Low critical.

● It is required that the High Critical tasks are provided bounded latencies while the 
Low critical ones can tolerate some degradation in doing so.

● Apart from the core, the interconnection fabric should also be deterministic, 
meaning it should provide an upper bound on the latencies of packets from critical 
tasks.

● Aim is to extend an NoC with wormhole flow control to incorporate notion of 
criticality.

● We borrow ideas from the paper WPMC Flood [1] :- It models the latency of flows 
over an enhanced wormhole NoC and performs WCET and schedulability analysis.

● They also perform simulations to correlate their results with the analysis.

[1] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case latency improvements in mixed-criticality wormhole networks-on-chip,”
28



Packetization in an NoC

● Network Interface breaks a message into packets consisting of fixed sized flits. 
● Link width determines flit size, packet can contain variable no. of flits :-

Control message - 1 flit , Data message - 5 flits

● The header flit has information like route info, VC ID.
● Wormhole flow control :The body flits follow the head in pipelined fashion, the header can 

perform a hop without other flits being present at the input port buffer.
[Fig.  : Dr. Leandro Indrusiak, ECRTS 2017]
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Wormhole NoC

● Typically each input port of router will have multiple buffers called Virtual Channels 
to store incoming flits.

● The VCs can be grouped into Virtual Nets (Vnet), each for a particular message class.
● Necessary to avoid protocol level deadlocks.

● A conventional Router has following stages 
○ Buffer Write
○ Route Computation
○ VC Allocation
○ Switch Allocation
○ Buffer Read
○ Switch Traversal
○ Link Traversal

[Reference : Dr. Tushar Krisha, 2017 gem5 workshop,  ARM Research Summit]

[Reference : Dr. Tushar Krisha, 2017 gem5 workshop,  ARM Research Summit]
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 Notion of Criticality in the Router
Addi
Adding criticality to the VCs 

● We assign criticalities to each VCs, namely HI (high critical) and LO(low critical).
● The Network interface while injecting makes sure that packets occupy VCs 

corresponding to their criticality. 
● Assignation of criticalities can be programmable by using 1-bit registers 

corresponding to each VC.

An input port having say 4 VCs would look like following :-

                            VC0 (HI)

                            VC1 (HI)

                            VC2 (LO)

                            VC3 (LO)
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Notion of Criticality in the Router

Criticality of a Network Link/Router

● The criticality of link affects how input & output port arbitration is done.
● Each flow is characterized by parameters like injection rate , message size etc. 
● High critical flows have predefined values for these parameters (HI-crit definition) to 

determine criticality of the link. [2]
● A link would be by default in LO-crit mode.   
● If high critical flow is within its HI-crit definition, then link stays in LO-crit mode. If 

not, the routers and its links switch to HI-crit mode.
● This information for mode change is embedded in the header so that the router is 

notified & this info propagates as the flit travels.
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[2] A. Burns, J. Harbin, L.S. Indrusiak, "A Wormhole NoC Protocol for Mixed Criticality Systems", RTSS



Notion of criticality in Router

Arbitration 

● In LO-crit mode, a round-robin policy is used among all VCs irrespective of criticality.
● In HI-crit mode, priority is given to the HI-crit VCs over LO-crit ones, while using RR 

among the HI-crit VCs.
● Similar policy is used at outport arbitration.
● If HI-crit packets are blocked due to unavailability of buffers at downstream router, 

LO-crit packets would make progress.  

Credit Management

● Separate credit management for HI-crit & LO-crit VCs.
● This ensures HI-crit packets flow only through HI-crit VCs. 
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NoC Modeling - Gem5

Garnet2.0

● Detailed interconnection model in Gem5 for simulating, modelling and exploring 
Network-On-Chips.

● Provides a cycle-accurate router and link model with parameterizable latency.
● Able to model various topologies and routing algorithms.
● Parameterizable over - 

○ Number of Virtual Channels
○ Depth of Virtual Channel buffers
○ Link width etc.
○ Injection rate etc.

et al. Agarwal, 2009: “GARNET: A detailed on-chip network model inside a full-system simulator” 34



Garnet2.0 

● The garnet system model comprises of - 
○ Routers
○ Data & Credit Links
○ Directory Controller
○ Core + Private L1 Cache
○ Distributed Shared L2 Cache
○ Other controllers (Eg: DMA)

● Synthetic Traffic Generator :- 
○ Uniform Random
○ Other Synthetic Patterns 

[Reference : Dr. Tushar Krisha, 2017 gem5 workshop,  ARM Research Summit]
35
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Observation and Results: 

● Average latency and maximum latency comparison: 
● VNET2 is a message class, where packet size is 5 flit (data message).
● Criticality assignment would be as following :- 

An input port having say 4 VCs (VNET2) 

                            VC8 (HI)

                            VC9 (HI)

                            VC10 (LO)

                            VC11 (LO)
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baseline(VNET2) Scheme(VC 8-9)
High Critical

Scheme(VC 10-11)
Low Critical

Average latency 33.90 20.19 36.19

Maximum latency 366 81 416



Garnet - Modelling a NoC

Network Configuration : 

● 1-cycle Router
● Topology : 4*4 Mesh                                               
● Routing : XY (DOR)- Deterministic in nature. 
● Simulation cycles : 10,000
● Flow control : Wormhole with VCs 
● Injection rate :  0.24
● Traffic pattern : uniform_random
● Link criticality : High

Assigning criticality to VCs in each VNET :

● Facilitates criticality usage in each message class.
● Eg:- a high critical Load request from core to memory. 
● Similarly, the response will travel from memory to core in HI-crit VCs only.
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Results: Priority to HI-Crit VCs
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● Compared to VNET2_baseline, tail latency of VCs 8-9 has come down drastically.
● Tail latency of VCs 10-11 has degraded w.r.t baseline case.  



NoC Generator : OpenSMART
● Can generate RTL for a network configuration like number of VCs, routing algorithm, topology, 

router pipeline stages, etc.

● Interface between NI and core will be via TileLink transactors.
● Implemented FPGA synthesizable LFSR modules for traffic generation to stress test NoC.

et al. H Kwon, 2017: “OpenSMART: Single-cycle multi-hop NoC generator in BSV and Chisel” 39

Language Bluespec, Chisel

Flow Control Wormhole with VCs

Topology Mesh, Look-ahead XY routing

Buffer Management Credit

Router Microarchitecture 1 cycle/2 cycle , SMART

Packet size 1 flit

Traffic Generator support/Stress Test Uniform_random, Bit_complement



WIP/Future Work 

● Modelling traffic in Gem5 to create hot modules to increase interference.
● Implementing Multi-flit packet support in OpenSmart.
● Incorporating criticality in OpenSMART routers.
● Modifying NI to insert packets into appropriate VCs.
● Run-time monitoring of flow parameters at NI to determine link criticality. 
● Preventing degradation of low critical packets by methods such as resetting link 

criticality, slack aware arbitration [3].
● Performance counters.

[3] S. Tobuschat, R. Ernst, "Efficient latency guarantees for mixed-criticality networks-on-chip", RTAS 2017 40



Cache Coherence

● Using ProtoGen [4] to generate cache and directory controller state machine.
● ProtoGen takes a Stable State Protocol (SSP) and generates concurrent, safety and  

deadlock free state machine.
● By default, it supports generation of MSI, MESI & MOSI protocols.
● We plan to explore time predictable coherence protocols and use Protogen to 

generate the controllers.

[4]  et al. N. Oswald, ProtoGen:Automatically Generating Directory Cache Coherence Protocols from Atomic Specifications, ISCA 2018
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Thank you

Repositories

Gem5: https://gitlab.com/shaktiproject/tools/shakti-gem5

OpenSMART: https://gitlab.com/shaktiproject/uncore/OpenSMART

Shakti TLS : https://gitlab.com/shaktiproject/cores/c-class/tree/136-c-class-tls 

https://gitlab.com/shaktiproject/tools/shakti-gem5
https://gitlab.com/shaktiproject/uncore/OpenSMART
https://gitlab.com/shaktiproject/cores/c-class/tree/136-c-class-tls

