
Securing the Shakti Processors

SHAKTI Group | CSE Dept | RISE Lab | IIT Madras

Arjun Menon

1st Workshop on Microarchitectural SecurityOctober 11th-12th, 2019

Microprocessor Attack Surface

2

Vulnerabilities in Hardware

Non-invasive: Power Analysis;
 EM Attacks;

Semi-invasive: Fault injection
Invasive: Bus probing

3

Vulnerabilities due to
Micro-architecture

Cache Timing Attacks; TLB attacks;
 Speculative attacks (Meltdown,

Spectre, Foreshadow, ZombieLoad)

2

Vulnerabilities in Software

Memory Vulnerabilities,
Control Flow Attacks,
Integer Overflows, Format
String; Privilege Escalation

1

Security Research at IIT Madras

3

Vulnerabilities in Hardware

Power Attack Secure
Microprocessor, EDA tools
for Power Attack Security

3

Vulnerabilities due to
Micro-architecture

Speculation Safe, Timing Attack
Protection, Security Counters

2

Vulnerabilities in Software

Fat pointers; Hardware
Enabled Compartments;
Safe-languages (OCaml)

1

Security Research at IIT Madras

Vulnerabilities in Software

Fat pointers; Hardware
Enabled Compartments;
Safe-languages (OCaml)

1

Memory attacks

5

char dest[10], source[20];

strcpy(dest,source);

Spatial

● Accessing data beyond the
valid range of addresses

● Two types:
○ Write overflow
○ Read overflow

int *ptr= malloc(20);
…
free(ptr)
…
int b=*ptr;

Temporal

● Accessing stale data
○ Use-after-free

● Freeing an already freed
memory

○ Double-free

What does RISC-V have?

● Physical Memory Protection (PMP)
○ Upto 16 physical memory regions which can be specified at a granularity of 4 bytes
○ Every access is checked if it is within one of the these regions
○ Attributes:

■ Read
■ Write
■ Execute
■ Granularity
■ Locked

6

Real Time Operating System (RTOS)

7

● Collection of tasks

● Scheduler that schedules these tasks

● No virtualisation
○ Each task has access to complete physical

memory

Image src: ttps://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

https://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

How is PMP useful?

8

Image src: ttps://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

https://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

How is PMP useful?

● Red zone
○ Small area at the bottom

of each stack
○ CPU exception if data is

pushed into that area
○ Not guaranteed to catch

every overflow

9

Image src: ttps://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

https://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

Shakti-T: A RISC-V Processor with Light
 Weight Security Extensions
Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel Gala and Kamakoti Veezhinathan
@HASP’17

The Idea
● Tagged architecture with fat-pointers to prevent spatial and temporal buffer overflows
● 1-bit tag that indicates if a processor word is pointer or data
● Fat-pointer structure:

11

Tag Pointer_id Pointer_value

63 48 47 0

The Solution

1. Have a common memory region called Pointer
Limits Memory (PLM) to store the values of
base and bounds

○ Declare a new CSR register which points to the

base address of PLM

○ Base and bounds are associated with a pointer

by the value of the offset (pointer_id)

12

PLBR

(Data +
Instructions)

PLM

MEMORY

Tag bit

pointer_id
2. Add a 1-bit tag to every memory word

○ 0: Data/Instruction

○ 1: Pointer

The Solution

3. Maintain a separate table alongside the register file that stores the values of base
and bounds (and also, the pointer_id)

○ One-level indexing is used to associate a GPR holding a pointer with its corresponding values of

base and bounds

13

The Solution

14

Microarchitecture

15

Tag Computation Unit

● Compute the tag of the result based on the operand tags and the operation

● Examples:

16

Operation Operand 1 Operand 2 Result

Add immediate Pointer Immediate value Pointer

Add Pointer Data Pointer

Mul Pointer X Exception

Subtract Pointer Pointer Data

● Future implementations with multiple tag bits that help enforce stronger security
properties

Comparison with Existing Work

17

 Safety checking Instrumentation
methodology

Metadata size for n
aliased pointers

Memory
fragmentation

Performance
overhead (delay)

Intel MPX [1] Spatial Compiler 128 x n No N/A

HardBound [2] Spatial Hardware 128 x n No HW: N/A
SW: 10%

Low-fat Pointer [3] Spatial Hardware 0 Yes HW: 5%

Watchdog [4] Spatial & Temporal Compiler +
Hardware

(256 x n) + 64 No HW: N/A
SW: 25%

WatchdogLite [5] Spatial & Temporal Compiler (256 x n) + 64 No SW: 29%

Shakti-T [6] Spatial & Temporal Hardware (64 x n) + 128 No HW: 1.5%+

Shakti-MS: A RISC-V Processor for
 Memory Safety in C
Sourav Das, R. Harikrishnan Unnithan, Arjun Menon, Chester Rebeiro and Kamakoti Veezhinathan
@LCTES’19

Contributions

1. Low overhead fat pointers ensuring spatial and temporal safety for
embedded systems

2. LLVM based open source compiler framework
3. Hardware extensions on open-sourced Shakti ecosystem

19

An end to end open-sourced hardware-software
solution for memory safety in C

Compiler framework: https://github.com/illustris/riscv-llvm-toolchain
Custom hardware: https://bitbucket.org/arjunmenon/sec-c
Docker image is available at illustris/shakti-ms-artefacts in dockerhub.

https://github.com/illustris/riscv-llvm-toolchain
https://bitbucket.org/arjunmenon/sec-c

Fat-pointer

20

ID

 Object

Fat-pointer

21

Spatial Safety

if((pointer < base) OR

(pointer + access_size) >= bound) {

trap;

}

Temporal Safety

if((base == NULL) OR

(id_hash != hash (Memory[base-8])) {

trap;

}
ID

 Object

Preventing Temporal Attacks on Heap

22

Methodology

23

C-program

char buf[10] = “” ;
...
buf[10] = ‘A’ ;

Clang

Generated IR

%2 = alloca [10 x i8], align 1
%3 = getelementptr
 inbounds [10 x i8],
 [10 x i8]* %2, i64 0, i64 5

...
store i8 65, i8* %3, align 1

LLVM
Passes

Modified IR

%2 = alloca [10 x i8], align 1
 ...
%fpr = call i128 @craft(i32
 %pti, i32 %stack_cookie_32,
 i32 %absolute_bnd,
 i32 %stack_hash)
...
call void @llvm.RISCV.validate(i64
 %fpr_hi, i64 %fpr_low)
...
store i8 65, i8* %ptrs, align 1

LLVM
Linker

Executable

addi sp,sp,-80
sd ra,72(sp)
…
addiw a1,a1,10
lui a2,0x1002
addi a2,a2,1360 #

1002550
<craft>
…
srli a0,a0,0x20
add a0,a1,a0
val a0,a2
…
sd a0,-40(s0)

efl2hex

Hardware

fb010113
04113423
…
00a5859b
01002637
55060613

…
02055513
00a58533
0006052b
…
fca43c23

Results

24

Results

25

Do you want to use an unsafe language
for your critical applications?

26

OCaml

Features of OCaml

● Powerful type system
○ Parametric polymorphism
○ Static type inference

● User-defined algebraic data types and pattern-matching
○ Combination of records and sums

● Foreign function interface
○ To interoperate with C code when necessary

● Fast native backend suitable for embedded systems

● Automatic memory management
○ Incremental garbage collection

● Aptness to symbolic computation
○ Missing branches are detected and reported

● Performance is ~1.2X to ~1.5X slower than C
28

Mirage OS

● It takes only parts of OS and links it
to the final executable

○ Lesser attack surface
○ Networking libraries

● Docker for MAC and Windows uses
mirage libraries internally

● Ported majority of Mirage OS to
RISC-V and is open sourced

○ https://github.com/mirage-shakti-iitm/

29

https://github.com/mirage-shakti-iitm/

Threat Surface

OS

App1 App2

Shakti Trusted Execution Environment

Threat Surface with Compartments

OS

App1 App2

Compartmentalization

33

Compartmentalization

34

Capability Matrix
0 1 2

0 1 0 1

1 1 1 0

2 0 1 1

Compartmentalization

35

Security Profile

Function 1 -> Cap 0
 Function 2 -> Cap 1
 Function 3 -> Cap 2
 Function 4 to 7 -> Cap 1

Function 9 -> Cap 0

New instruction

● New instruction for assigning and checking capability

● Assembly: checkcap imm12
○ Checks if the current compartment_id == imm12, and if not equal raises an exception

○ Uses the custom opcode space in RISC-V

● Inserted at the beginning of every function

36

Compartmentalization

37

Are we secure
enough now?

Vulnerabilities due to
Micro-architecture

Meltdown Safe Memory Protection

2

Cache Timing Side Channel Attacks

39

Shared LLC

Core 1 Core 2

Private
Cache

Private
Cache

Interconnect

● Last Level Caches(LLCs) have been target for most of
these attacks which is shared across all the cores.

● A Attacker Programs(AP) learns details about Victim
Program(VP) through it’s interference in LLCs

● The Interference in LLCs causes timing difference in
accessing attacker program’s cache data.

● Broadly the interference can be categorised as two
types:

○ AP accesses VP’s cached data - lesser access time
○ AP accesses VP evicted data - higher access time

● Solutions:
○ Interference can be blocked: Partitioning the cache
○ Interference can be minimized: Randomizing the

cache mappings.

Solution

● Addresses to LLCs are encrypted

● Advantageous to use low-latency block ciphers like PRINCE and Feistel

● Keep changing the encryption key periodically
○ Borrow ideas like gradual remapping (CEASER @MICRO’18)

40

41

Vulnerabilities in Hardware

Power Attack Secure
Microprocessor

3

PARAM: Power-Attack Resistant Microprocessor
Muhammad Arsath, Vinod Ganesan, Rahul Bodduna and Chester Rebeiro

Steps Involved

43

1. Simulate RTL of the processor

2. Identify modules that leak the most

3. Apply appropriate countermeasures

Leakage Analysis on Shakti C-Class

44

For an implementation of AES in software

Leakage Analysis on Shakti C-Class

Expected Design:

● Operands are sent only to
relevant execution units

45

Actual Design:

● Operands are sent to all
execution units

Leakage Mitigation

● Lightweight encryption on
all registers and cache

○ 4-round Feistel structure
● Cache tag and set indices

are remapped using a key
● Architectural changes to

prevent flow of unused
data to execution units

● Area overhead of 43%
● Frequency reduction of 33%

○ Can be reduced to < 5%

46

Security Analysis

47

Shakti-C

● Leaks information after
62319 power traces

PARAM

● No leakage even after 1
million traces

The path ahead

● Integrate Countermeasures

● Formal Verification
○ Hardware

■ COQ/Kami

○ Software

■ Use COQ or F* for specifying highly sensitive code

■ Use existing libraries from HACL*

● SoC Security

● Single Address Space OS

● AI based vulnerability assessment

48

THANK YOU

49

REFERENCES
[1] Intel Corporation, “Intel MPX Explained.” https://intel-mpx.github.io/design/

[2] Devietti, Joe, et al. "Hardbound: architectural support for spatial safety of the C programming language." ACM SIGARCH Computer
Architecture News. Vol. 36. No. 1. ACM, 2008.

[3] Kwon, Albert, et al. "Low-fat pointers: compact encoding and efficient gate-level implementation of fat pointers for spatial safety
and capability-based security." Proceedings of the 2013 ACM SIGSAC conference on Computer & Communications Security (CCS). ACM, 2013.

[4] Nagarakatte, Santosh, et al. “Watchdog: Hardware for safe and secure manual memory management and full memory safety.”,
Proceedings of the 2012 International Symposium on Computer Architecture (ISCA). ACM, 2012.

[5] Nagarakatte, Santosh, et al. "WatchdogLite: Hardware-accelerated compiler-based pointer checking." Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO). ACM, 2014.

[6] Menon, Arjun, et al. "Shakti-T: A RISC-V processor with light weight security extensions." In Proceedings of the Hardware and
Architectural Support for Security and Privacy (HASP), p. 2. ACM, 2017.

50

https://intel-mpx.github.io/design/

