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Microprocessor Attack Surface
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Vulnerabilities in Hardware

Non-invasive:    Power Analysis;
   EM Attacks;

Semi-invasive:  Fault injection
Invasive:    Bus probing
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Vulnerabilities due to
Micro-architecture

Cache Timing Attacks; TLB attacks;
 Speculative attacks ( Meltdown, 

Spectre, Foreshadow, ZombieLoad )
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Vulnerabilities in Software

Memory Vulnerabilities, 
Control Flow Attacks,
Integer Overflows, Format 
String; Privilege Escalation
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Security Research at IIT Madras

3

Vulnerabilities in Hardware

Power Attack Secure 
Microprocessor, EDA tools
for Power Attack Security
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Vulnerabilities due to
Micro-architecture

Speculation Safe, Timing Attack 
Protection, Security Counters
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Vulnerabilities in Software

Fat pointers; Hardware
Enabled Compartments;
Safe-languages (OCaml)
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Security Research at IIT Madras

Vulnerabilities in Software

Fat pointers; Hardware
Enabled Compartments;
Safe-languages (OCaml)
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Memory attacks
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char dest[10], source[20];

strcpy(dest,source);

Spatial

● Accessing data beyond the 
valid range of addresses

● Two types:
○ Write overflow
○ Read overflow

int *ptr= malloc(20);
…
free(ptr)
…
int b=*ptr;

Temporal

● Accessing stale data
○ Use-after-free

● Freeing an already freed 
memory

○ Double-free



What does RISC-V have?

● Physical Memory Protection (PMP)
○ Upto 16 physical memory regions which can be specified at a granularity of 4 bytes
○ Every access is checked if it is within one of the these regions
○ Attributes:

■ Read
■ Write
■ Execute
■ Granularity
■ Locked
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Real Time Operating System (RTOS)
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● Collection of tasks

● Scheduler that schedules these tasks

● No virtualisation
○ Each task has access to complete physical 

memory

Image src: ttps://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

https://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf


How is PMP useful?
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How is PMP useful?

● Red zone
○ Small area at the bottom 

of each stack
○ CPU exception if data is 

pushed into that area
○ Not guaranteed to catch 

every overflow
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Shakti-T: A RISC-V Processor with Light
                   Weight Security Extensions
Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel Gala and Kamakoti Veezhinathan 
@HASP’17



The Idea
● Tagged architecture with fat-pointers to prevent spatial and temporal buffer overflows
● 1-bit tag that indicates if a processor word is pointer or data
● Fat-pointer structure:
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Tag Pointer_id Pointer_value

63 48 47 0



The Solution

1. Have a common memory region called Pointer 
Limits Memory (PLM) to store the values of 
base and bounds

○ Declare a new CSR register which points to the 

base address of PLM

○ Base and bounds are associated with a pointer 

by the value of the offset (pointer_id)
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PLBR

( Data + 
Instructions )

PLM

MEMORY

Tag bit

pointer_id
2. Add a 1-bit tag to every memory word

○ 0: Data/Instruction

○ 1: Pointer



The Solution

3. Maintain a separate table alongside the register file that stores the values of base 
and bounds (and also, the pointer_id)

○ One-level indexing is used to associate a GPR holding a pointer with its corresponding values of 

base and bounds
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The Solution
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Microarchitecture
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Tag Computation Unit

● Compute the tag of the result based on the operand tags and the operation

● Examples:
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Operation Operand 1 Operand 2 Result

Add immediate Pointer Immediate value Pointer

Add Pointer Data Pointer

Mul Pointer X Exception

Subtract Pointer Pointer Data

● Future implementations with multiple tag bits that help enforce stronger security 
properties



Comparison with Existing Work
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  Safety checking Instrumentation 
methodology

Metadata size for n 
aliased pointers

Memory 
fragmentation

Performance
overhead (delay)

Intel MPX [1] Spatial Compiler 128 x n No N/A

HardBound [2] Spatial Hardware 128 x n No HW: N/A
SW: 10%

Low-fat Pointer [3] Spatial Hardware 0 Yes HW: 5%

Watchdog [4] Spatial & Temporal Compiler + 
Hardware

(256 x n) + 64 No HW: N/A
SW: 25%

WatchdogLite [5] Spatial & Temporal Compiler (256 x n) + 64 No SW: 29%

Shakti-T [6] Spatial & Temporal Hardware (64 x n) + 128 No  HW: 1.5%+



Shakti-MS: A RISC-V Processor for
                       Memory Safety in C
Sourav Das, R. Harikrishnan Unnithan, Arjun Menon, Chester Rebeiro and Kamakoti Veezhinathan 
@LCTES’19



Contributions

1. Low overhead fat pointers ensuring spatial and temporal safety for 
embedded systems

2. LLVM based open source compiler framework
3. Hardware extensions on open-sourced Shakti ecosystem
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An end to end open-sourced hardware-software 
solution for memory safety in C

Compiler framework: https://github.com/illustris/riscv-llvm-toolchain
Custom hardware:     https://bitbucket.org/arjunmenon/sec-c
Docker image is available at illustris/shakti-ms-artefacts in dockerhub.

https://github.com/illustris/riscv-llvm-toolchain
https://bitbucket.org/arjunmenon/sec-c


Fat-pointer
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ID

    Object



Fat-pointer
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Spatial Safety

if( (pointer < base)  OR

(pointer + access_size) >= bound ) {

trap;

}

Temporal Safety

if( (base == NULL)  OR

( id_hash != hash (Memory[base-8]) ) { 

trap;

}
ID

   Object



Preventing Temporal Attacks on Heap
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Methodology
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C-program

char buf[10] = “” ;
...
buf[10] = ‘A’ ;

Clang

  

Generated IR

%2 = alloca [10 x i8], align 1        
%3 = getelementptr
          inbounds [10 x i8],
          [10 x i8]* %2, i64 0, i64 5

      
...
store i8 65, i8* %3, align 1

LLVM 
Passes

  

Modified IR

%2 = alloca [10 x i8], align 1 
 ...
%fpr = call i128 @craft(i32
             %pti, i32 %stack_cookie_32, 
             i32 %absolute_bnd,
             i32 %stack_hash)             
...
call void @llvm.RISCV.validate( i64
                 %fpr_hi, i64 %fpr_low)    
...        
store i8 65, i8* %ptrs, align 1

LLVM 
Linker

  

Executable

addi sp,sp,-80
sd  ra,72(sp)
…
addiw   a1,a1,10
lui a2,0x1002
addi a2,a2,1360 #

1002550 
<craft>
…
srli a0,a0,0x20
add a0,a1,a0
val a0,a2
…
sd  a0,-40(s0)

efl2hex

  

Hardware

fb010113
04113423
…
00a5859b
01002637
55060613

…
02055513
00a58533
0006052b
…
fca43c23



Results
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Results
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Do you want to use an unsafe language 
for your critical applications?
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OCaml



Features of OCaml

● Powerful type system
○ Parametric polymorphism
○ Static type inference

● User-defined algebraic data types and pattern-matching
○ Combination  of records and sums

● Foreign function interface
○ To interoperate with C code when necessary

● Fast native backend suitable for embedded systems

● Automatic memory management
○ Incremental garbage collection

● Aptness to symbolic computation
○ Missing branches are detected and reported

● Performance is ~1.2X to ~1.5X slower than C
28



Mirage OS

● It takes only parts of OS and links it 
to the final executable

○ Lesser attack surface
○ Networking libraries

● Docker for MAC and Windows uses 
mirage libraries internally

● Ported majority of Mirage OS to 
RISC-V and is open sourced

○ https://github.com/mirage-shakti-iitm/
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https://github.com/mirage-shakti-iitm/


Threat Surface

OS

App1 App2



Shakti Trusted Execution Environment



Threat Surface with Compartments

OS

App1 App2



Compartmentalization
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Compartmentalization
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Capability Matrix
0 1 2

0 1 0 1

1 1 1 0

2 0 1 1



Compartmentalization
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Security Profile

Function 1 -> Cap 0
 Function 2 -> Cap 1
        Function 3 -> Cap 2
   Function 4 to 7 -> Cap 1

Function 9 -> Cap 0



New instruction

● New instruction for assigning and checking capability 

● Assembly: checkcap imm12
○ Checks if the current compartment_id == imm12, and if not equal raises an exception

○ Uses the custom opcode space in RISC-V

● Inserted at the beginning of every function

36



Compartmentalization
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Are we secure 
enough now?



Vulnerabilities due to
Micro-architecture

Meltdown Safe Memory Protection

2



Cache Timing Side Channel Attacks
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Shared LLC

Core 1 Core 2

Private
Cache

Private
Cache

Interconnect

● Last Level Caches(LLCs) have been target for most of 
these attacks which is shared across all the cores.

● A Attacker Programs(AP) learns details about Victim 
Program(VP) through it’s interference in LLCs

● The Interference in LLCs causes timing difference in 
accessing attacker program’s cache data.

● Broadly the interference can be categorised as two 
types:

○ AP accesses VP’s cached data - lesser access time
○ AP accesses VP evicted data - higher access time

● Solutions:
○ Interference can be blocked: Partitioning the cache
○ Interference can be minimized: Randomizing the 

cache mappings.



Solution

● Addresses to LLCs are encrypted

● Advantageous to use low-latency block ciphers like PRINCE and Feistel

● Keep changing the encryption key periodically
○ Borrow ideas like gradual remapping (CEASER @MICRO’18)

40
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Vulnerabilities in Hardware

Power Attack Secure 
Microprocessor

3



PARAM: Power-Attack Resistant Microprocessor
Muhammad Arsath, Vinod Ganesan, Rahul Bodduna and Chester Rebeiro



Steps Involved
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1. Simulate RTL of the processor

2. Identify modules that leak the most

3. Apply appropriate countermeasures



Leakage Analysis on Shakti C-Class
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For an implementation of AES in software



Leakage Analysis on Shakti C-Class

Expected Design:

● Operands are sent only to 
relevant execution units
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Actual Design:

● Operands are sent to all 
execution units



Leakage Mitigation

● Lightweight encryption on 
all registers and cache

○ 4-round Feistel structure
● Cache tag and set indices 

are remapped using a key
● Architectural changes to 

prevent flow of unused 
data to execution units

● Area overhead of 43%
● Frequency reduction of 33%

○ Can be reduced to < 5%
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Security Analysis
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Shakti-C

● Leaks information after 
62319 power traces

PARAM

● No leakage even after 1 
million traces



The path ahead

● Integrate Countermeasures

● Formal Verification
○ Hardware

■ COQ/Kami

○  Software

■ Use COQ or F* for specifying highly sensitive code

■ Use existing libraries from HACL*

● SoC Security

● Single Address Space OS

● AI based vulnerability assessment
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THANK YOU
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