Securing the Shakti Processors

Arjun Menon
SHAKTI Group | CSE Dept | RISE Lab | lIT Madras

October 11th-12th, 2019 18t Workshop on Microarchitectural Security

Microprocessor Attack Surface

Vulnerabilities due to
Micro-architecture

Cache Timing Attacks; TLB attacks;
Speculative attacks (Meltdown,
Spectre, Foreshadow, ZombielLoad)

Vulnerabilities in Software
Memory Vulnerabilities,
Control Flow Attacks,

Integer Overflows, Format
String; Privilege Escalation

Vulnerabilities in Hardware

Non-invasive: Power Analysis;

EM Attacks;
Semi-invasive: Fault injection
Invasive: Bus probing
2 <HAKTI

Security Research at lIT Madras

Vulnerabilities in Software

0 Fat pointers; Hardware
Enabled Compartments;

Safe-languages (OCaml)
Vulnerabilities due to

Micro-architecture

Speculation Safe, Timing Attack
Protection, Security Counters Vulnerabilities in Hardware

Power Attack Secure

Microprocessor, EDA tools

for Power Attack Security

Security Research at lIT Madras

Vulnerabilities in Software

0 Fat pointers; Hardware
Enabled Compartments;
Safe-languages (OCaml)

<SHAKTI

Spatial

char dest[10], source[20];

strcpy(dest,source);

Accessing data beyond the

valid range of addresses
Two types:

o Write overflow

o Read overflow

Memory attacks

Temporal
int *ptr= malloc(20);

i"}ee(ptr)

int b=*ptr;

Accessing stale data
o Use-after-free

Freeing an already freed
memory
o Double-free

What does RISC-V have?

Physical Memory Protection (PMP)
Upto 16 physical memory regions which can be specified at a granularity of 4 bytes
Every access is checked if it is within one of the these regions

(@)
(@)
(@)

Attributes:
m Read
m Write
m Execute
m Granularity
m Locked

Real Time Operating System (RT0S)

/ . \ e (ollection of tasks
(=) = ® -
‘ -~ e Scheduler that schedules these tasks

e No virtualisation

. o Each task has access to complete physical
@ memory
O © ©

Image src: ttps://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

7

<SHAKTI

https://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

How is PMP useful?

USER-mode MACHINE-mode

Shared Memory

Process 3

/o 1/0
K Memory / Qemw

Image src: ttps://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

8

https://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

How is PMP useful?

e Redzone | Task Stack
Initia £,
o Small area at the bottom Top-of-Stack A
of each stack
o (CPU exception if data is
pushed into that area e Tl
Used Stack
o Not guaranteed to catch
every overflow
Current
SP
Stack Size
Free Stack
<4+— TOR
R Zone Recé?Zo ne Prevent access
e (no write or execute)
Base V \/
Address <+ NA4

Image src: ttps://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

9 <SHAKTI

https://content.riscv.org/wp-content/uploads/2018/12/Using-the-RISC-V-PMP-with-an-Embedded-RTOS-to-Achieve-Process-Separation-and-Isolation-Labrosse.pdf

Shakti-T: A RISC-V Processor with Light
Weight Security Extensions

Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel Gala and Kamakoti Veezhinathan
@HASP17

The ldea

e Tagged architecture with fat-pointers to prevent spatial and temporal buffer overflows
e 1-bit tag thatindicates if a processor word is pointer or data
e Fat-pointer structure:

63 48 47 0

Tag Pointer _id Pointer_value

11

The Solution

1. Have a common memory region called Pointer
Limits Memory (PLM) to store the values of

base and bounds
o Declare a new CSR register which points to the
base address of PLM
o Base and bounds are associated with a pointer
by the value of the offset (pointer _id)

2. Adda 1-bit tag to every memory word
o 0O:Data/Instruction
o 1:Pointer

(Data +
Instructions)

MEMORY

PLBR

PLM

} pointer_id

12

The Solution

3. Maintain a separate table alongside the register file that stores the values of base

and bounds (and also, the pointer _id)

o One-level indexing is used to associate a GPR holding a pointer with its corresponding values of
base and bounds

13

GPR

RO

BnBlIndex

index

R1

\ J

X

R2

Y

9

Y

\ J

Y

R31

Y

15

__

BnBLookUp
base bound ptr_id
X X X
1000 1100 13
2000 2400 7
BnBCache

The Solution

14

Microarchitecture

TCU Operand forwarding and WB path
for Base and Bounds Registers

I I
|| PLBR || BnB_SP |!
I
: :) 1
: BnBCache :
1
1

WRITE-
BACK

FETCH DECODE! EXECUTE

I I I
[1 ; !
Branch Target : | ! : Operand forwarding and WB path for GPRs
: : General - :
I I Purpose I I
: T : Registers : :
I I (GPR) ALU o o !
MUX 1 |E m w i n |1
c.’.;}\ e ZHE E 1 'C—a‘ 1
e Z ZA I I I
";;ter::f"o-n_' A e O |- !5<-1 i Z 4+ Controller }—' 3, s WB
ory — D M| § oo i s o e L Z. ! l T o~k Stage
S 3 A I b | 1
= E e SEU ; : E :
m Data 1
R : Memory :
| 1
|
|
I
|
|
|
|

MEMORY !
I

15 <SHAKTI

Tag Computation Unit

e (ompute the tag of the result based on the operand tags and the operation

e Examples:

Operation Operand 1 Operand 2 Result
Add immediate Pointer Immediate value Pointer
Add Pointer Data Pointer
Mul Pointer X Exception
Subtract Pointer Pointer Data

e Future implementations with multiple tag bits that help enforce stronger security
properties

16 <SHAKTI

Comparison with Existing Work

Safety checking Instrumentation Metadata size for n Memory Performance
methodology aliased pointers fragmentation overhead (delay)
Intel MPX [1] Spatial Compiler 128xn No N/A

HardBound [2] Spatial Hardware 128xn No HW: N/A
SW: 10%
Low-fat Pointer [3] Spatial Hardware 0 Yes HW: 5%
Watchdog [4] Spatial & Temporal Compiler + (256 x n) + 64 No HW: N/A
Hardware SW: 25%
WatchdoglLite [5] Spatial & Temporal Compiler (256 x n) + 64 No SW: 29%

Shakti-T [6] Spatial & Temporal Hardware (64 xn)+128 No HW: 1.5%

17

Shakti-MS: A RISC-V Processor for
Memory Safety in C

Sourav Das, R. Harikrishnan Unnithan, Arjun Menon, Chester Rebeiro and Kamakoti Veezhinathan
@LCTES19

Contributions

1. Low overhead fat pointers ensuring spatial and temporal safety for
embedded systems

2. LLVM based open source compiler framework

3. Hardware extensions on open-sourced Shakti ecosystem

An end to end open-sourced hardware-software
solution for memory safety in C

Compiler framework: https://github.com/illustris/riscv-llvm-toolchain
Custom hardware: https://bitbucket.org/arjunmenon/sec-c
Docker image is available at illustris/shakti-ms-artefacts in dockerhub.

19

https://github.com/illustris/riscv-llvm-toolchain
https://bitbucket.org/arjunmenon/sec-c

Fat-pointer

<«—32 bits —

BOUND BASE ID_HASH POINTER Object

128 bits >

A

20

Fat-pointer

Spatial Safety

Temporal Safety

if((pointer < base) OR

(pointer + access _size) >= bound) {

if((base == NULL) OR

(id_hash!= hash (Memory[base-8])) {

trap; trap;
} ID
<«—32 bits —
BOUND BASE ID_HASH POINTER Object

A

128 bits

21

Preventing Temporal Attacks on Heap

ID I New_ID
base base
free(fpr_q)
Allocated — Allocated
region region
bound bound
22 ’

<SHAKTI

Methodology

Clang LLVM LLVM efl2hex
Passes Linker

C-program Generated IR Modified IR Executable Hardware
char buf(10] =""; %2 =alloca [10 x i8], align 1 %2 = alloca [10 x i8], align 1 addi sp,sp,-80 fb010113
%3 = getelementptr sd ra,72(sp) 04113423
buf[10] ="A"; inbounds [10 x i8], %fpr = call i128 @craft(i32
[10xi8]* %2,i64 0, i64 5 %pti, i32 %stack_cookie_32, addiw a1,a1,10 00a5859b
i32 %absolute_bnd, lui a2,0x1002 01002637
i32 %stack _hash) addi a2,a2,1360 # 55060613
store i8 65, i8* %3, align 1 1002550
call void @llvm.RISCV.validate(i64 <craft>
%fpr_hi, i64 %fpr_low) 02055513
srli a0,a0,0x20 00a58533
store i8 65, I8 %ptrs, align 1 add a0,a1,a0 0006052b
val a0,a2
fcalt3c23
sd a0,-40(s0)

23

siayuiod |eqo|b

EEE RISCV_CLANG_SHAKTI
24

sAelie dojew

Z3 RISCV_CLANG

uos abisw

S1oNJ1S

5w

Spw

|esianel] aal}

siyulod

Programs

Zawiw

ippexaen

Cycle count of different user space programs

ueds-aid

yjed-paddew

buals'gcy

pueidads'666

pueidads’ 866

0

2000000 -
1500000 A
1000000 -

500000 A

s3uno)d 324D

siqulod |eqo|b

25

sAelie dojjew

uos abiaw

S1oNJ1S

=21 Code Size without our implementation
I Code Size with our implementation

15w

Spw

|esianel] 2al}

siajuiod

Programs

Zawiw

ippeoen

Code size overheads of different programs

ueds-aid

yjed-paddew

buals'gsy

pueidads 666

pueidads'g866

25000 A
20000 A
15000 4
10000 4
5000 +
0-

3215 3pod

Do you want to use an unsafe language
for your critical applications?

26

0Caml

Features of 0Caml

Powerful type system
o Parametric polymorphism
o Static type inference

User-defined algebraic data types and pattern-matching
o Combination of records and sums

Foreign function interface
o Tointeroperate with C code when necessary

Fast native backend suitable for embedded systems

Automatic memory management
o Incremental garbage collection

Aptness to symbolic computation
o Missing branches are detected and reported

Performance is ~1.2X to ~1.5X slower than C

28

Mirage 0S

e |t takes only parts of OS and links it Configuration Files Mirage
to the final executable — C 'I
o Lesser attack surface Application Binary ompiler
o Networking libraries Language Runtime
° chker f.or MIAC gnd Windows uses Karisal Thisads
mirage libraries internally b —————
£ & User Processes
e Ported majority of Mirage OS to b= ————— S
&p Filesystem Application Code

RISC-V and is open sourced
o https://qithub.com/mirage-shakti-iitm/

Mirage Runtime

Network Stack

29

https://github.com/mirage-shakti-iitm/

Threat Surface

63
Appl App2

0OS | W

Shakti Trusted Execution Environment

Threat Surface with Compartments

63
Appl App2

0OS

Compartmentalization

Application1 Application 2
_compartments
PO
_cross-compatment
interface
_capability profile

--' “"& heap profile

"~security augments

ELF Executable
with security checks

Compilation View Execution View

33

Compartmentalization

SourceCode o
Security Application1 Application 2
Profile

"~security augments

ELF Executable
with security checks

Compilation View Execution View |

Compartmentalization

SourceCode

Application1 Application 2
1T |

Security Profile

Function1->Cap 0
Function 2 ->Cap 1
Function 3 -> Cap 2
Function4to7->Cap 1
Function9->Cap 0

k. “security augments

ELF Executable
with security checks

Compilation View Execution View

35

e New instruction for assigning and checking capability

e Assembly: checkcap imm12
o Checks if the current compartment_id == imm12, and if not equal raises an exception

o Uses the custom opcode space in RISC-V

e Inserted at the beginning of every function

36

Compartmentalization

Application1 Application 2

Are we secure
enough now?

"~security augments

ELF Executable
with security checks

Compilation View Execution View

_com partments

’cross-compatment

.-~ interface

_capability profile
-~ & heap profile

37

Vulnerabilities due to
Micro-architecture a

Meltdown Safe Memory Protection

Cache Timing Side Channel Attacks

e last Level Caches(LLCs) have been target for most of
these attacks which is shared across all the cores.

e A Attacker Programs(AP) learns details about Victim
Program(VP) through it's interference in LLCs

e The Interference in LLCs causes timing difference in
accessing attacker program'’s cache data.

e Broadly the interference can be categorised as two
types:
o AP accesses \/P's cached data - lesser access time
o AP accesses /P evicted data - higher access time

e Solutions:
o Interference can be blocked: Partitioning the cache
o Interference can be minimized: Randomizing the
cache mappings.

Core 1

B

L1

Core 2

Private Private
Cache Cache
Interconnect

39

e Addressesto LLCs are encrypted
e Advantageous to use low-latency block ciphers like PRINCE and Feistel

e Keep changing the encryption key periodically
o Borrow ideas like gradual remapping (CEASER @MICRO'18)

Physical [Physical]
ires . . Address
[Address] Hit/Miss Data
T—I_ [Unchanged]
i Key
—)[Encryption |—) LLC Writeback)[Decryption

40

Vulnerabilities in Hardware

Power Attack Secure
Microprocessor

41

PARAM: Power-Attack Resistant Microprocessor

Muhammad Arsath, Vinod Ganesan, Rahul Bodduna and Chester Rebeiro

<SHAKTI

Steps Involved

1. Simulate RTL of the processor
2. ldentify modules that leak the most

3. Apply appropriate countermeasures

Source RTL

of Processor

0
O,

Behavioural PLAN
Simulation . tit
attern
l Extraction
o |
Identifying Correlation
Leaking < Analysis
Modules

Leakage
Mitigation

lllll

10E

TTTTTT

PARAM

(Power Attack Resistant

Microprocessor)

N

i
) [5S
2

Safe
HDL
Constructs

Obfuscation

e

43

Leakage Analysis on Shakti C-Class

REGISTERFILE

INTEGER
RF

PRF

ALU I-CACHE
MUL-DIV
UNIT

1.0

Severe
0.6

Medium
0.3

Mild
0.1

No Leakage
0.0

For an implementation of AES in software

Module Leak — gyp #Leaking
Count Signals
Data Cache 165 0.99
Memory Hierarchy | Hit Buffer 35 0.35 85
Line Buffer 2 1.0
Register File 3 1.0
Registers PRF 25 1.0 24
CSR 13 0.64
Functional ALY 28 093
Units FPU . . 3 1.0 21
Mul-Div Unit 2 1.0
IF-1D 0 0
Interstage ID-EXE 11 1.0 5
Buffers EXE-MEM 6 1.0
MEM-WB 4 1.0
Instruction
Fetch BPU 2 0.95 1
Instruction Instruction Cache 0 0.0 0
Memory Line Buffer 0 0.0
Instruction TLB 0 0.0
B Data TLB 0 010 2

44

Leakage Analysis on Shakti C-Class

Expected Design:

e Operands are sent only to
relevant execution units

Actual Design:

next PC

e Operands are sent to all
execution units

Execution Unit

operand fetch (_[— PRF

ALU
OPERATION

MuL - DIv
OPERATION

RF

Execution Unit operand fetch

ALU
OPERATION

45

1.0

0.6

0.3

0.1

No Leakage
0.0

Leakage Mitigation

Lightweight encryption on

all registers and cache
o 4-round Feistel structure

Cache tag and set indices
are remapped using a key
Architectural changes to
prevent flow of unused
data to execution units
Area overhead of 43%

Frequency reduction of 33%
o (Canbereducedto<5%

46

Security Analysis

]
Incorrect key Byte Guesses

Shaktl—C —— Correct key Byte Guess
=== Mean Time for Disclosure=62319

o

N

o
1

=

=

(S}
1

o Leaksinformation after g
62319 power traces

Correlation Score
o
=
o
1

0.05 A1

0.00 A
0 20000 40000 60000 80000 100000
Number of Traces
0.08 -
Incorrect key Byte Guesses
—— Correct key Byte Guess

2 0.06 1 PARAM
(9]
V)]
S 0.041 m ¢ Noleakage even after 1
© gy
° million traces
5 0.021 \A

0.00 -

0 200000 400000 600000 800000 1000000
Number of Traces 47

The path ahead

e |[ntegrate Countermeasures

e Formal Verification
o Hardware
m COQ/Kami
o Software
m Use COQ or F* for specifying highly sensitive code

m Use existing libraries from HACL*
e 5So(Security
e Single Address Space OS

e Al based vulnerability assessment

48

THANK YOU

49

REFERENCES

[1] Intel Corporation, “Intel MPX Explained.” https:/intel-mpx.github.io/design/

[2] Devietti, Joe, et al. "Hardbound: architectural support for spatial safety of the C programming language." ACM SIGARCH Computer
Architecture News. \/ol. 36. No. 1. ACM, 2008.

[3] Kwon, Albert, et al. "Low-fat pointers: compact encoding and efficient gate-level implementation of fat pointers for spatial safety
and capability-based security." Proceedings of the 2013 ACM SIGSAC conference on Computer & Communications Security (CCS). ACM, 2013.

[4] Nagarakatte, Santosh, et al. “Watchdog: Hardware for safe and secure manual memory management and full memory safety.’
Proceedings of the 2012 International Symposium on Computer Architecture (ISCA). ACM, 2012.

[5] Nagarakatte, Santosh, et al. "WatchdogLite: Hardware-accelerated compiler-based pointer checking:" Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO). ACM, 2014.

[6] Menon, Arjun, et al. "Shakti-T: A RISC-V processor with light weight security extensions." In Proceedings of the Hardware and
Architectural Support for Security and Privacy (HASP), p. 2. ACM, 2017.

50

https://intel-mpx.github.io/design/

