
SWADESHI MICROPROCESSOR

CHALLENGE-2020

SHAKTI USER MANUAL V1.3.1

DEVELOPED BY: SHAKTI DEVELOPMENT TEAM @ IITM

SHAKTI.ORG.IN

CONTACT @ shakti [dot] iitm [@] gmail [dot] com

shakti [dot] iitm [@] gmail [dot] com

0.1 Proprietary Notice

Copyright © 2020, SHAKTI @ IIT Madras.All rights reserved.

Information in this document is provided “as is,” with every effort ensuring that the

documentation is as accurate as possible.

SHAKTI @ IIT Madras expressly disclaims all warranties, representations, and con-

ditions of any kind, whether express or implied, including, but not limited to, the

implied warranties or conditions of merchantability, fitness for a particular purpose

and non-infringement.

SHAKTI @ IIT Madras does not assume any liability rising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, in-

cluding without limitation indirect, incidental, special, exemplary, or consequen-

tial damages.

SHAKTI @ IIT Madras reserves the right to make changes without further notice to

any products herein.

The project was funded by Ministry of Electronics and Information
Technology (MeITY), Government of India

1

0.2 Release Information

Version Date Changes

0.1 February 27, 2020 Initial Release

0.2 June 22, 2020 Updated Appendix A

0.3 July 21, 2020 Updated Sections 1.1, 3.3

1.0 August 22, 2020 Updated Sections 4.1, Appendix

1.1 November 24, 2020 Review comments & GPIO changes

1.2 January 24, 2021 Correct 7.1, 7.2 pin mapping

1.3 March 04, 2021 Add Ethernet memory map address

1.3.1 June 24, 2021 Updated 5.2.1 with gitlab login steps

1.3.2 July 26, 2021 Updated Pin mapping for GPIO14, 15

2

Table of Contents

0.1 Proprietary Notice . 1

0.2 Release Information . 2

1 Brief Introduction to SHAKTI 5

1.1 Processors . 5

1.1.1 E-class . 6

1.1.2 C-class . 6

1.2 Software . 8

1.2.1 SHAKTI-SDK . 8

1.2.2 PlatformIO IDE . 8

1.2.3 Supported Operating systems 8

2 Board Details 9

2.1 Development boards . 9

2.1.1 Board Availability . 10

2.1.2 Documentation . 10

3 Board setup 11

3.1 Powering the board . 11

3.2 Setting up the Debugger . 11

3.2.1 Debug interface over Xilinx FTDI (recommended) 12

3.3 Programming SHAKTI . 13

3.3.1 Prerequisites . 13

3.3.2 Tool Installation . 13

3.3.3 Programming PINAKA (e32-a35) mcs File onto the FPGA . . 15

3.3.4 Programming PARASHU(e32-a100) mcs File onto FPGA . . . 16

3.3.5 Programming Vajra (c64-a100) mcs File onto FPGA 16

3.3.6 Programming SHAKTI onto the Arty7 boards with readily available

’.mcs’ file . 17

4 SoC Device Information 19

4.1 Device memory map . 20

4.1.1 PINAKA memory map . 20

4.1.2 PARASHU memory map . 22

4.1.3 VAJRA memory map . 24

5 Software Development Flow 26

5.1 SHAKTI-SDK Architecture . 26

5.1.1 Board Support Package . 27

5.1.2 Software . 28

5.1.3 Makefile . 28

5.2 Setting up the SHAKTI-SDK . 30

3

5.2.1 Pre-requisites . 30

5.2.2 Download the SHAKTI-SDK repository 30

5.2.3 Download the SHAKTI-TOOLS repository 31

5.2.4 Setting up SHAKTI Tool-chain 31

5.2.5 Update the SDK or TOOLS . 33

5.3 Application Development . 33

5.3.1 Steps to add a new application to SHAKTI-SDK 33

5.3.2 My first program ! . 34

5.3.3 Build . 34

5.3.4 Run . 34

5.4 Running application in Debug mode 35

5.4.1 Steps to run . 35

5.4.2 Application flow . 36

5.5 Running application in Standalone mode 37

5.5.1 Steps to generate standalone user application 37

Appendices 38

A Device pin mapping 38

A.1 PINAKA, PARASHU and VAJRA . 38

B Understanding PinMux design 44

C Reach us at! 46

C.1 Steps to create an issue . 46

Bibliography 47

4

1SECTION

Brief Introduction to SHAKTI

SHAKTI is an open-source initiative by the Reconfigurable Intelligent Systems Engineering (RISE)

group at IIT-Madras [1]. The aim of the SHAKTI initiative includes building open source

production grade processors, complete System on Chips (SoCs), development boards

and SHAKTI-based software platform. The SHAKTI project is building a family of 6

processors, based on the RISC-V ISA [2]. There is a road-map to develop reference

System on Chips (SoC) for each class of processors, which will serve as an exemplar for

that family [3]. The team has channelized years of research on processor architecture to

build these SoCs which has competitive commercial offerings in the market with respect

to occupied power, area and performance. The current SoC (as of December 2019)

developments are for the Controller (C- Class) [5] and Embedded (E- Class) classes [6].

1.1 Processors

SHAKTI is a RISC-V [2] based processor developed at RISE lab, IIT Madras [1, 7]. SHAKTI

has envisioned a family of processors as part of its road-map, catering to different segments

of the market. They have been broadly categorized into "Base Processors", "Multi-Core

Processors" and "Experimental Processors" [3]. The E and C-classes are the first set

of indigenous processors aimed at Internet of Things (IoT), Embedded and Desktop

markets. The processor design is free of any royalty and is open-sourced under BSD-

3 license. A brief overview of the E and C-classes of processors is described below.

5

1.1.1 E-class

The E-Class [6] is a 32 bit micro processor capable of supporting all extensions of RISC-V

ISA as listed in Table 1. The E-class is an In-order 3-stage pipeline having an operational

frequency of less than 200MHz on silicon. It is positioned against ARM’s M-class (CorTex-

M series) cores [3]. The major anticipated use of the E-class of processors is in low-

power compute environments, automotive and IoT applications such as smart-cards,

motor-controls and home automation. The E-class is also capable of running Real Time

Operating Systems (RTOS) like Zephyr OS [10] and FreeRTOS [18].

I Base Integer Instruction Set

M Standard Extension for Integer Multiplication and Division

A Standard Extension for Atomic Instructions

C Standard Extension for Compressed Instructions

Table 1: RISC-V ISA extensions in SHAKTI SP 2020 SoC’s

PINAKA (E32-A35) [12] is a SoC built around E-class [6]. Pinaka is a 32-bit E-class micro

controller with 4KB ROM and 128KB BRAM, has 32 General Purpose Input Output (GPIO)

pins (out of which upper 8 GPIO pins are dedicated to onboard LEDs and switches), a

Platform Level Interrupt Controller (PLIC), a Timer (CLINT), 2 Serial Peripheral (SPI), 3

Universal Asynchronous Receiver Transmitter (UART), 2 Inter Integrated Circuit (I2C),

6 Pulse Width Modulator (PWM), an in-built Xilinx Analog Digital Converter (X-ADC),

Soft Float library support, Physical Memory Protection (PMP) enabled, onboard FTDI

based debugger and Pin Mux support (Arduino compatible pin assignments). Table 2

describes in detail.

PARASHU (E32-A100) [13] is a SoC built around E-class [6]. Parashu is a 32-bit E-class

micro controller with 4 KB of ROM and 256 MB of DDR. The rest of the configuration in

this SoC, is the same as PINAKA and is given in Table 2.

1.1.2 C-class

The C-class [5] is an in-order 6-stage 64-bit micro controller supporting the entire RISC-

V ISA. It targets the mid-range compute systems supporting 200-800MHz. C-class targets

compute applications in the 0.5-1.5 Ghz range. The C-class is customizable for low-

power and high-performance variants. It is positioned against ARM’s Cortex A35/A55.

Linux, SEL4 and FreeRTOS are some of the Operating Systems ported and verified with

C-class [5].

VAJRA(C64-A100) [14] is an SoC built around C-class. This SoC is a single-chip 64-bit

C-class micro controller with 4KB of ROM and 256MB DDR3 RAM. The rest of the SoC

6

configuration is as given in Table 2. VAJRA is aimed at mid-range application workloads

like Industrial controllers and Desktop market. [1, 3].

GPIO Pins 32

Upper 8 pins Onboard LEDs and switches

PLIC 1

Counter 1

SPI 2

UART 3

I2C 2

PWM 6

ADC Xilinx

CLINT 1

Float Soft library

PMP Enabled

Debugger Onboard FTDI based

Pin Mux Yes

Pin assignment Arduino compatible

Ethernet lite PARASHU, VAJRA

Table 2: PINAKA, PARASHU and VAJRA SoC details

7

1.2 Software

SHAKTI class of processors have a wide range of system softwares and tool chain support.

There are Software Development Kits (SDK) and Integrated Development Environment (IDE)

dedicated for SHAKTI SoCs.

1.2.1 SHAKTI-SDK

Software Development Kits (SDKs) are integral part of any product development. The

main objective behind using a SDK is to reduce the development time. The SHAKTI-

SDK is a platform that enables developing applications over SHAKTI class of processors.

Firmware support is provided for the end users to develop applications. The SHAKTI-

SDK is simple and easily customizable. Some of the essential features like DEBUG codes

and board support libraries are provided in the SDK.

1.2.2 PlatformIO IDE

PlatformIO is an All-In-One IDE extension in Visual Studio that now supports SHAKTI

and its applications across all desktops (Linux, Mac, Windows). This IDE enables developers

to code, build, upload, test and debug their applications in a single place without the

need to switch to multiple terminals and run complex commands. PlatformIO has an

extension that supports SHAKTI development boards. For more details visit

https://shakti.org.in/sp2020-shakti.html

1.2.3 Supported Operating systems

Several operating systems have been ported to SHAKTI class of processors. There is also

a simple software framework to port different softwares to SHAKTI. Linux, SEL4, Free

RTOS, and Zephyr are some of the well known operating systems that work on SHAKTI.

https://gitlab.com/shaktiproject/software/zephyr-rtos

8

https://shakti.org.in/sp2020-shakti.html
https://gitlab.com/shaktiproject/software/zephyr-rtos

2SECTION

Board Details

SHAKTI support on different types of development boards is crucial as this expands the

hardware choice of FPGAs. As part of this effort, initially two varieties of FPGA boards

are being supported. They are Xilinx’s Arty7 35T and Arty7 100T. This section lists the

details on the supported boards and purchase information.

2.1 Development boards

There are development boards for both E and C-class of processors. The details on the

board support for different classes of processors are given below.

1. PINAKA [12]

– PINAKA is a SoC based on SHAKTI E-class [6].

– PINAKA is supported on Artix 7 35T board.

– It has an abridged version of 32 bit E-class. It includes I, M, A and C 1.

2. PARASHU [13]

– PARASHU is a SoC based on SHAKTI E-class [6].

– PARASHU is supported on Artix 7 100T board.

– It has an abridged version of 32 bit E-class. It includes I, M, A and C1.

1Refer Table. 1

9

3. VAJRA[14]

– VAJRA is a SoC based on SHAKTI C-class [5].

– VAJRA is supported on Artix 7 100T board.

– It has an abridged version of 64 bit C-class. It includes I, M, A and C1.

2.1.1 Board Availability

The boards for the SP2020 competition will be provided by Ministry of Electronics and

Information Technology (MeITY). For further details, please refer to

https://innovate.mygov.in/swadeshi-microprocessor-challenge/

2.1.2 Documentation

1. Xilinx - Vivado Design Suite

https://www.xilinx.com/products/design-tools/vivado.html

2. Arty A7 - User manual

https://reference.digilentinc.com/reference/programmable-logic/arty-a7/
reference-manual

3. Xilinx ADC

https://www.xilinx.com/products/intellectual-property/xadc-wizard.
html#overview
https://www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.
pdf

4. Ethernet Lite

https://www.xilinx.com/products/intellectual-property/temac.html#documentation

10

https://innovate.mygov.in/swadeshi-microprocessor-challenge/
https://www.xilinx.com/products/design-tools/vivado.html
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual
https://www.xilinx.com/products/intellectual-property/xadc-wizard.html#overview
https://www.xilinx.com/products/intellectual-property/xadc-wizard.html#overview
https://www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/products/intellectual-property/temac.html#documentation

3SECTION

Board setup

The board has to be programmed with any one of the SoCs listed earlier. This section,

presents the procedure to set up the board for application development. Topics include

connecting a debugger, installing Vivado, building the SHAKTI SoC bit stream, programming

the on-board configuration memory and running example programs. Broadly, the following

steps are needed to setup the board:

1. Connect the board to the PC.

2. Program the SHAKTI BitStream to the board.

3. Run OpenOCD to test above step.

4. Setup necessary wiring for devices or sensors.

3.1 Powering the board

Plug one end of the micro USB cable into the PC’s slot and the other end to the MicroUSB

connector (J10) in the board. This will power ON the board. please see Figure 1. The

connector J10 is a JTAG and UART port combination. If a sensor requires more power, an

external 12V power supply can be connected via Power Jack (J12) . Refer Arty reference

manual for detailed power on instructions.

3.2 Setting up the Debugger

This section explains setting up the board for debug mode. The setup for standalone

mode is discussed in the Section 5.5 of this manual. The debugger for the board is the

11

https://reference.digilentinc.com/reference/programmable-logic/arty-a7/start
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/start

Xilinx FTDI chip on the Arty boards. The details on how to connect the debugger to the

board is given below.

3.2.1 Debug interface over Xilinx FTDI (recommended)

The FPGA board is powered on by connecting the micro USB to pin J10. This also

connects internally to the UART0 via FTDI interface which provides debugger support.

Figure 1: FTDI connection

12

3.3 Programming SHAKTI

This section walks through implementing SHAKTI C and E-class SoC’s on Xilinx’s Arty7

100T and 35T. In order to run SHAKTI on Xilinx development boards, the relevant Register

Transfer Level (RTL) design has to be programmed on to the FPGA. The procedure to do

the same is listed below.

3.3.1 Prerequisites

Ensure that 64-bit version of Ubuntu 18.04 is used. In this machine, the following list of

software packages has to be installed.

A. Vivado 2018 and above.

B. Miniterm.

C. OpenOCD.

D. RTL for the SoC

Before starting, the board has to be connected to the PC. The following links host the

RTL design.

• Pinaka

https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a35

• Parashu

https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a100

• Vajra

https://gitlab.com/shaktiproject/sp2020/-/tree/master/c64-a100

The next few sections explains about generating a RTL bisttream, and programming it

to FPGA.

3.3.2 Tool Installation

https://www.youtube.com/playlist?list=PL3o7X5EfdcL4_wOaGs0sQCY33VrRH8d3_
Note: The above url is the video guide for configuring the FPGA.

A. Installing Vivado

1. If you dont have a Xilinx account, create a free account, using url below:

https://www.xilinx.com/registration/create-account.html

2. Download the Vivado HLx 2018.3 Linux Self Extracting Web Installer, by clicking

on the link below:

https://www.xilinx.com/member/forms/download/xef-vivado.html?filename=
Xilinx_Vivado_SDK_Web_2018.3_1207_2324_Lin64.bin

13

https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a35
https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a100
https://gitlab.com/shaktiproject/sp2020/-/tree/master/c64-a100
https://www.youtube.com/playlist?list=PL3o7X5EfdcL4_wOaGs0sQCY33VrRH8d3_
https://www.xilinx.com/registration/create-account.html
https://www.xilinx.com/member/forms/download/xef-vivado.html?filename=Xilinx_Vivado_SDK_Web_2018.3_1207_2324_Lin64.bin
https://www.xilinx.com/member/forms/download/xef-vivado.html?filename=Xilinx_Vivado_SDK_Web_2018.3_1207_2324_Lin64.bin

3. Make the Vivado installer executable and run it using:
chmod +x Xilinx_*.bin
sudo ./Xilinx_*.bin

4. Once the installer loads2, click "Next".

5. Now enter your Xilinx username and password. Then Click "Next".

6. Agree to all three statements and Click "Next". Incase, you disagree you can’t

proceed further.

7. Select "Vivado HL WebPACK" and click "Next".

8. Click "Reset to Defaults" and then press "Next". 3

9. By default, the "installation directory" is "/tools/Xilinx". This is the default installation

directory. Click "Next".

10. Click "Install" and wait for the installer to finish.

11. Install the Xilinx cable drivers:

cd /tools/Xilinx/Vivado/2018.3/data/xicom/cable_drivers/lin64/install_script/install_drivers

sudo ./install_drivers

12. Do some permissions cleanup:

cd
cd .Xilinx/Vivado
sudo chown -R $USER *
sudo chmod -R 777 *
sudo chgrp -R $USER *

13. Add Vivado path to the environmental variable PATH in .bashrc :
export PATH=$PATH:/tools/Xilinx/Vivado/2018.3/bin
export PATH=$PATH:/tools/Xilinx/SDK/2018.3/bin

14. Test Vivado

vivado -version
Vivado v2018.3 (64-bit)
SW Build 2405991 on Thu Dec 6 23:36:41 MST 2018
IP Build 2404404 on Fri Dec 7 01:43:56 MST 2018
Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

2If installer says, a newer version is available. Please press continue and stay in the current version
3Incase, size is a constraint in your system. Just select Artix-7 under "Devices->Production Devices->7

Series. Let, the other two top menus remain untouched

14

15. Download the board files and copy it to the Vivado repository

git clone https://github.com/Digilent/vivado-boards.git
cd vivado-boards/new/board_files
sudo cp -r ./* /tools/Xilinx/Vivado/2018.3/data/boards/board_files

B. Installation of Miniterm

sudo apt-get install python3-serial

C. Installation of Shakti-tools OpenOCD

• Clone the Shakti-tools repository

git clone --recursive https://gitlab.com/shaktiproject/software/
shakti-tools.git

3.3.3 Programming PINAKA (e32-a35) mcs File onto the FPGA

Note: You must make use of the 32-bit tool chain for programming.

• Connect the board with the USB cable to the PC and move to the HOME directory.

Figure 2: BOARD – PC

• Clone the sp2020 repository to PC.
git clone --recursive https://gitlab.com/shaktiproject/sp2020.git
cd e32-a35/

• Program the FPGA.4

make generate_verilog generate_boot_files ip_build arty_build
generate_mcs program_mcs JOBS=<jobs>

• Disconnect the USB Cable from the board and reconnect again.

4To re-program the FPGA, please run "make generate_verilog generate_boot_files ip_build arty_build

generate_mcs program_mcs JOBS=<jobs>", delete the directory sp2020/e32-a35 and try again.

15

 https://gitlab.com/shaktiproject/sp2020.git

• Run OpenOCD command.5

sudo $(which openocd) -f ./shakti-arty.cfg

3.3.4 Programming PARASHU(e32-a100) mcs File onto FPGA

Note: You must make use of the 32-bit tool chain for programming.

• Connect the board with the USB cable to the PC and move to the HOME directory.

• Clone the sp2020 repository to PC.
git clone --recursive https://gitlab.com/shaktiproject/sp2020.git
cd e32-a100/

• Program the FPGA6 .
make generate_verilog generate_boot_files ip_build arty_build
generate_mcs program_mcs JOBS=<jobs>

• Disconnect the USB Cable to the board and reconnect again.

• Run OpenOCD command5.

sudo $(which openocd) -f ./shakti-arty.cfg

3.3.5 Programming Vajra (c64-a100) mcs File onto FPGA

Note: You must make use of the 64-bit tool chain for programming.

• Connect the board with the USB cable to the PC and move to the HOME directory.

• Clone the sp2020 repository to PC.
git clone --recursive https://gitlab.com/shaktiproject/sp2020.git
cd c64-a100/
pip3 install -r requirements.txt
python3 -m configure.main

• Program the FPGA7 .
make -j<jobs> generate_verilog
make generate_boot_files ip_build arty_build generate_mcs program_mcs
JOBS=<jobs>

• Disconnect the USB Cable to the board and reconnect again.

• Run OpenOCD command5.

sudo $(which openocd) -f ./shakti-arty.cfg
5If OpenOCD runs and listens on port 3333, then your board is programmed with SHAKTI. You are

ready to run applications, benchmarks, etc... on it
6To rerun "make generate_boot_files i_build arty_build generate_mcs program_mcs JOBS=<jobs>",

delete the directory sp2020/e32-a100 and try
7To rerun "make generate_boot_files i_build arty_build generate_mcs program_mcs JOBS=<jobs>",

delete the directory sp2020/c64-a100 and try

16

https://gitlab.com/shaktiproject/sp2020.git
https://gitlab.com/shaktiproject/sp2020.git

3.3.6 Programming SHAKTI onto the Arty7 boards with readily available ’.mcs’ file

The .mcs files are generated and hosted in our repository.

• https://gitlab.com/shaktiproject/sp2020/-/tree/master/mcs

Video Tutorial: https://youtu.be/4EYoEWHGpHI

Steps for Arty7 35t/100t:

• Connect the board with the USB cable to the PC and move to the HOME directory.

• Please download the .mcs files from the below link.

git clone --recursive https://gitlab.com/shaktiproject/sp2020/-/tree/
master/mcs

• Start Vivado 2018.3 and Open Hardware Manager.

Figure 3: Vivado 2018.3

• Click on open target, Proceed to click on Auto connect. Now the FPGA board is

connected to Vivado.

• Right-click on the board name "xc7a100t" or "xc7a35t". Select "Add Configuration

memory device".

Figure 4: Add Configuration memory device

17

https://gitlab.com/shaktiproject/sp2020/-/tree/master/mcs
https://youtu.be/4EYoEWHGpHI
https://gitlab.com/shaktiproject/sp2020/-/tree/master/mcs
https://gitlab.com/shaktiproject/sp2020/-/tree/master/mcs

• Select:

– Manufacturer as Spansion or Micron (based on the Micron or Spansion flash

on the board)

– Density -128

– Type - spi

– Width - x1_x2_x4

• Select the Configuration memory part and click on Ok.

Figure 5: Program Configuration Memory Device

• In the new window, select the downloaded .mcs file and click ok to program SHAKTI

onto the board.

• Disconnect the USB Cable to the board and reconnect again.

• Run OpenOCD command5.

sudo $(which openocd) -f ./shakti-arty.cfg

18

4SECTION

SoC Device Information

The SHAKTI based SoC’s consist of processor, memory and various Input-Output devices

(I/O). The devices in the SoC are memory mapped. Memory mapped I/O is a method to

communicate between the core and the peripheral devices. In this method the device

address and the internal registers of the devices are mapped to memory locations. The

processor and these devices communicate with the help of the AXI system bus. The next

two sections deal with the list of devices and the memory map of the devices on different

shakti based SoC’s.

Sl. No Device name Abbreviation

1 BRAM Block Random Access Memory

2 CLINT Core Local INterrupt Controller

3 DDR Double Data Rate RAM

4 GPIO General Purpose Input Output

5 I2C Inter-Integrated Circuit

6 PLIC Platform Level Interrupt Controller

19

Sl. No Device name Abbreviation

7 PWM Pulse Width Modulation

8 SDRAM Synchronous Dynamic Random Access

9 SPI Serial Peripheral

10 UART Universal Asynchronous Receiver Transmitter

11 XADC Xlinix Analog Digital Converter

12 Ethernet lite AXI Ethernet Lite MAC

Table 3: Device description table

4.1 Device memory map

The overall layout of the memory map of a device based around the SHAKTI class of

processor is listed below. This allows easy porting of software.

4.1.1 PINAKA memory map

Sl.No Peripheral Base Address Start Base Address End

1. Memory (TCM) 0x80000000 0x87FFFFFF

2. Debug 0x00000010 0x0000001F

3. PWM 0 0x00030000 0x000300FF

4. PWM 1 0x00030100 0x000301FF

5. PWM 2 0x00030200 0x000302FF

6. PWM 3 0x00030300 0x000303FF

7. PWM 4 0x00030400 0x000304FF

20

Sl.No Peripheral Base Address Start Base Address End

8. PWM 5 0x00030500 0x000305FF

9. SPI 0 0x00020000 0x000200FF

10. SPI 1 0x00020100 0x000201FF

11. UART0 0x00011300 0x00011340

12. UART1 0x00011400 0x00011440

13. UART2 0x00011500 0x00011540

14. CLINT 0x02000000 0x020BFFFF

15. GPIO 0x00040100 0x000401FF

16. PLIC 0x0C000000 0x0C01001F

17. I2C0 0x00040000 0x000400FF

18. XADC 0x00041000 0x000413FF

19. Boot Rom 0x00001000 0x00002FFF

20. I2C1 0x00041400 0x000414FF

21. PinMux 0x00041500 0x00041510

Table 4: PINAKA class memory map

21

4.1.2 PARASHU memory map

Sl. No Peripheral Base Address Start Base Address End

1. Memory (DDR) 0x80000000 0x8FFFFFFF

2. Debug 0x00000010 0x0000001F

3. UART0 0x00011300 0x00011340

4. UART1 0x00011400 0x00011440

5. UART2 0x00011500 0x00011540

6. I2C0 0x00040000 0x000400FF

7. GPIO 0x00040100 0x000401FF

8. CLINT 0x02000000 0x020BFFFF

9. PLIC 0x0C000000 0x0C01001F

10. PWM0 0x00030000 0x000300FF

11. PWM1 0x00030100 0x000301FF

12. PWM2 0x00030200 0x000302FF

13. PWM3 0x00030300 0x000303FF

22

Sl. No Peripheral Base Address Start Base Address End

14. PWM4 0x00030400 0x000304FF

15. PWM5 0x00030500 0x000305FF

16. SPI0 0x00020000 0x000200FF

17. SPI1 0x00020100 0x000201FF

18. I2C1 0x00041400 0x000414FF

19. XADC 0x00041000 0x000413FF

20. PinMux 0x00041500 0x000415FF

21. Boot Rom 0x00001000 0x000415FF

Table 5: PARASHU memory map

23

4.1.3 VAJRA memory map

Sl. No Peripheral Base Address Start Base Address End

1. Memory (DDR) 0x80000000 0x87FFFFFF

2. Debug 0x00000010 0x0000001F

3. UART0 0x00011300 0x00011340

4. UART1 0x00011400 0x00011440

5. UART2 0x00011500 0x00011540

6. I2C0 0x00040000 0x000400FF

7. GPIO 0x00040100 0x000401FF

8. CLINT 0x02000000 0x020BFFFF

9. PLIC 0x0C000000 0x0C01001F

10. PWM0 0x00030000 0x000300FF

11. PWM1 0x00030100 0x000301FF

12. PWM2 0x00030200 0x000302FF

13. PWM3 0x00030300 0x000303FF

24

Sl. No Peripheral Base Address Start Base Address End

14. PWM4 0x00030400 0x000304FF

15. PWM5 0x00030500 0x000305FF

16. SPI0 0x00020000 0x000200FF

17. SPI1 0x00020100 0x000201FF

18. I2C1 0x00041400 0x000414FF

19. XADC 0x00041000 0x000413FF

20. PinMux 0x00041500 0x000415FF

21. Boot Rom 0x00001000 0x00041400

22. Xil Ethernet lite 0x00044000 0x00047FFF

Table 6: VAJRA memory map

Note: The Xadc and Ethernet are Xilinx IP’s. Please refer the Document section (2.1.2).

25

5SECTION

Software Development Flow

This section presents the software framework for design and implementation of embedded/IoT

applications. We discuss in detail, on how to develop applications using the SHAKTI

Software Development Kit (SHAKTI-SDK).

5.1 SHAKTI-SDK Architecture

The SHAKTI-SDK is a C/C++ platform to develop applications over SHAKTI. The SDK

has the necessary firmware code and framework to develop newer applications on the

hardware. The framework is light weight and customizable.

SHAKTI-SDK

BSPDOCS SHAKTI-TOOLS SOFTWARE

DRIVER

LIBS

CORE

INCLUDE

UTILS

BOARDS

EXAMPLES

BENCHMARK

PROJECTS

2

Figure 6: SDK architecture

26

5.1.1 Board Support Package

The BSP consists of system files and driver files for various devices. It contains certain

platform dependent definitions for each board. Essentially, the BSP is the layer above

the hardware. It includes the following sub directories:

1. Drivers

The drivers are a set of software constructs that help software applications to access

the devices in the SoC. They are generally low level API’s, that execute a particular

task in the hardware.

DRIVERS

PLIC GPIO

I2C

SPI

QSPI

XADC

UART

CLINT

PWM

Ethernet lite

2. Include

This directory has header files for core and for each driver. The board independent

variable/macro definitions and declarations pertaining to each driver is included

here.

3. Libs

The library utilities and the boot code are hosted here. Library is a common place

for reusable code. The libraries can be compiled as a separate "lib" file and used.

4. Core

The core usually has functions related to the startup codes, trap handlers and

interrupt vectors.The code related to memory initialisation are also available here.

27

5. Utils

This contains the code related to standalone mode feature of the shakti processor.

6. Third_party

This directory provides support for external boards as well as custom boards. This

includes the definitions of board specific functions such as console drivers.

5.1.2 Software

The software directory provides a platform for developing various applications, independent

of the underlying BSP. All the applications/projects developed in SHAKTI-SDK reside in

this directory. In general, an application will involve writing high level C/C++ code that

uses BSP API’s. The software directory is broadly classified in to three sub-directories,

1. Projects

This directory consists of applications developed using different sensors. These

are usually a combination of standalone applications.

2. Benchmarking

Applications or bare metal codes that are developed for bench-marking a core

reside here. These programs usually describe the capability of the SHAKTI class of

processors.

3. Examples

This is the place where any new standalone application is developed. Few example

programs involving sensors are already developed for different peripherals and

kept here. These programs demonstrate the integration of BSP and the core support

libraries with the user programs.

5.1.3 Makefile

To compile programs more efficiently the GNU’s MAKE utility is used. The make utility

uses the Makefile to compile program from source code. The output generated by the

MAKE utility is in ELF format. The Makefile has support for different target boards and

applications. The Makefile’s are mostly non-recursive and devoid of complex expressions.

The supported make commands are listed below.

• make help

Lists the possible commands supported in Makefile.

• make list_targets

List the boards that are supported.

• make list_applns

28

Lists the samples that are available in SHAKTI-SDK

• make software PROGRAM=? TARGET=?

PROGRAM can be found from "make list_applns"

TARGET= pinaka or parashu or vajra

Default TARGET is pinaka

• make debug8 PROGRAM=? TARGET=?

PROGRAM can be found from "make list_applns"

TARGET= pinaka or parashu or vajra

Default TARGET is pinaka

debug command adds the debug support to applns.

• make all TARGET=?

TARGET= pinaka or parashu or vajra

Default TARGET is pinaka

All the applications under example directory are compiled for above target.

• make clean

clean all the executable.

The design overrides the executable generated by the last target with current

target.

• make clean CLEAR=?

CLEAR ?= any application under list_applns

clean the executable for a application.

8This command is necessary, if the program is going to be debugged using gdb

29

5.2 Setting up the SHAKTI-SDK

5.2.1 Pre-requisites

• Ensure that the following packages are installed in the host system. To solve the

software dependencies, copy and paste each of the commands below in terminal

and press enter.

sudo apt-get install autoconf automake autotools-dev curl make-guile

sudo apt install libmpc-dev libmpfr-dev libgmp-dev libusb-1.0-0-dev bc

sudo apt install gawk build-essential bison flex texinfo gperf libtool

sudo apt install make patchutils zlib1g-dev pkg-config libexpat-dev

sudo apt install libusb-0.1 libftdi1 libftdi1-2

sudo apt install libpython3.6-dev

• Register/login with your email id/username and password into gitlab.com. After

logging in successfully, click on the url https://gitlab.com/shaktiproject/
software/shakti-sdk.git

• Click on "Request Access" to gain access to shakti-sdk repository.

Figure 7: Requesting Access for shakti-sdk

5.2.2 Download the SHAKTI-SDK repository

SHAKTI-SDK repository contains scripts, board support packages to build your application.

Please check if you have gained access to the sdk repository before proceeding.

30

https://gitlab.com/shaktiproject/software/shakti-sdk.git
https://gitlab.com/shaktiproject/software/shakti-sdk.git

It can be cloned by running the following command,

git clone https://gitlab.com/shaktiproject/software/shakti-sdk.git

5.2.3 Download the SHAKTI-TOOLS repository

The SHAKTI-TOOLS repository contains both 64-bit and 32-bit toolchain, for building

your application. It can be cloned by running the following command:

git clone --recursive https://gitlab.com/shaktiproject/software/
shakti-tools.git

If you had omitted --recursive option earlier, then run the command below to clone the

submodules repository:

git submodule update --init --recursive

5.2.4 Setting up SHAKTI Tool-chain

SHAKTI uses RISC-V tools. The tool-chain can be installed in two ways,

• Manual method

· Build and install toolchain from riscv-tools [8].

· The riscv-tools repository has the readme to install RISC-V toolchain.

• Automatic method (Recommended)

· The tool-chain executable is hosted in the SHAKTI-TOOLS repository [9].

· The tool-chain was prebuilt in Ubuntu 18.04 system and hosted here.

· The absolute path of the tool-chain has to be added to "PATH" variable and

exported, to use it across the file system.

· The steps to export the tool chain to the PATH variable is provided below,

Steps for automatic method

31

https://gitlab.com/shaktiproject/software/shakti-sdk.git
https://gitlab.com/shaktiproject/software/shakti-tools.git
https://gitlab.com/shaktiproject/software/shakti-tools.git

$ pwd
/home/user
$ git clone --recursive https://gitlab.com/shaktiproject/software/
shakti-tools.git
$ cd shakti-tools
$ pwd
/home/user/shakti-tools
For 32-bit toolchain
$ SHAKTITOOLS=/home/user/shakti-tools
$ export PATH=$PATH:$SHAKTITOOLS/bin
$ export PATH=$PATH:$SHAKTITOOLS/riscv32/bin
$ export PATH=$PATH:$SHAKTITOOLS/riscv32/riscv32-unknown-elf/bin
For 64-bit toolchain
$ SHAKTITOOLS=/home/user/shakti-tools
$ export PATH=$PATH:$SHAKTITOOLS/bin
$ export PATH=$PATH:$SHAKTITOOLS/riscv64/bin
$ export PATH=$PATH:$SHAKTITOOLS/riscv64/riscv64-unknown-elf/bin
$ which riscv64-unknown-elf-gcc
/home/user/shakti-tools/riscv64/bin/riscv64-unknown-elf-gcc

Things to know:

1. Please add the particular toolchain needed (32 or 64 bit toolchain) in .bashrc

file in the home directory to set the PATH permanently instead of that particular

session.

2. The variable $SHAKTITOOLS is the location of SHAKTI-TOOLS in the file

system.

3. The command which riscv64-unknown-elf-gcc helps you to verify whether tool-

chain path is exported correctly.

32

https://gitlab.com/shaktiproject/software/shakti-tools.git
https://gitlab.com/shaktiproject/software/shakti-tools.git

5.2.5 Update the SDK or TOOLS

To update the SDK or TOOLS repository to the latest version, move to the respective

repository (cd shakti-sdk) or cd shakti-tools and use the command below.

$ git pull origin master
$ git submodule update --init --recursive

This updates the required repository to its latest version

5.3 Application Development

As discussed earlier, SHAKTI-SDK helps in developing applications for SHAKTI class of

processors. The steps to develop a small application using SHAKTI-SDK is discussed.

SHAKTI-SDK comes with a separate repository for Applications and Projects. A project

usually has its own design environment, except that it imports the BSP. An application

is a simple program that demonstrates the working of sensors using SHAKTI class of

processors. Any program with a smaller memory footprint is put under Applications.

Before developing an application, make sure that the pre-requisites mentioned below

are ready.

• Board is up and running with SHAKTI.

• SHAKTI-SDK has been downloaded and installed.

• SHAKTI Tool chain has been installed.

• PATH variable has been set on the tool chain.

5.3.1 Steps to add a new application to SHAKTI-SDK

An application program has to use the the BSP API’s for any device access. The steps

followed to develop a simple program is listed below

• The new application is created under one of the example/XYZ_applns directory.

• XYZ should be a device type in the SoC. For example it can be UART, I2C, etc...

• Lets assume, we are under the XYZ_applns directory.

• Create a directory for the new application and name it accordingly.

• Inside the directory, create source and header files for the application.

• Create and edit a new Makefile for the application (refer existing examples).

• The name of the application directory corresponds to the name of the application.

• Make an entry in the existing Makefile under ./shakti-sdk/software/examples for

the new application.

33

• Now typing make list-applns will list the new application as one under SHAKTI-

SDK.

5.3.2 My first program !

Follow the steps given below to compile and run a program to print "Hello World!"

• The device required is UART. Include UART device headers for the program.

• Write your program under software/examples/uart_applns/.

• Create a directory called ’first’.

• Create a first.c file and write a program to print "Hello World !".

• Create and edit a Makefile for the program and save in the ’first’ directory (refer

software/examples directory).

• Make a new entry for the program in the ’existing Makefile’ under examples directory.

5.3.3 Build

The make commands in SHAKTI-SDK gives various options to build and run a program.

The list of make commands can be found by typing make help in the terminal. Once

the program is built using MAKE command, the ELF file is generated. The ELF file is the

final executable that can be loaded into the memory and run.

$ cd shakti-sdk
$ make software PROGRAM=hello9 TARGET=pinaka

Interpreting above commands:

• PROGRAM is the new one created. It is listed by typing "make list_applns".

• TARGET= pinaka or parashu or vajra.

• Default TARGET is pinaka.

5.3.4 Run

Once the application is built, the executable is generated in the output directory. The

executable is in ELF file format and they have the extension .shakti. There are two

modes to run an application on the arty boards. The two modes are discussed in the

following sections.

34

https://gitlab.com/shaktiproject/software/shakti-sdk/tree/master/software/examples

5.4 Running application in Debug mode

After the ELF for the target application is generated, the program can be run in Debug

or Standalone mode. Debug mode helps in incremental development. It also helps to

understand the program flow and helps debug applications easily.

The Arty35/100T board should be connected to the OpenOCD debugger, in order to

debug your program using the RISC-V GNU Debugger (GDB) software. The standard

GDB commands supported by RISC-V GDB can be used to debug. Since we have built

the application already, we can start loading it to the Arty board and test. The following

steps list out the actions to be taken:

5.4.1 Steps to run

Prerequisites

1. Install miniterm

$ sudo apt-get install python3-serial

2. Open three terminals, one for each of the following

a. One terminal for UART terminal display.

b. Another for OpenOCD

c. And the last one for GDB server.

Follow the steps below to set up and run programs10

1. In the first terminal, open a serial port to display output from UART.

$ sudo miniterm.py /dev/ttyUSB0 19200

2. In the second terminal, launch OpenOCD with super user (sudo) permission. Please

ensure that, you are in the SHAKTI-SDK directory.

For example,

$ pwd
/home/user/shakti-sdk –––––-> you are in the right directory

Press reset in the board and run the following commands.

$ cd ./bsp/third_party/artix7_35t
$ sudo $(which openocd) -f ftdi.cfg

10Open the terminals in the above mentioned order.

35

3. In the third terminal launch RISC-V GDB. Applications will be loaded and run

here.

$ riscv32-unknown-elf-gdb (For RISC-V 32bit use)
(gdb) set remotetimeout unlimited
(gdb) target remote localhost:3333 (Connect to remote target)
(gdb) file path/to/executable (Specify the program to be debugged)
(gdb) load (Load the file to memory)
(gdb) c (Execute the program)

Note:

1. "/dev/ttyUSB0" - ttyUSB means "USB serial port adapter" and the "0" is the USB

device number. The device number can change based on USB port availability.

2. For C-class (64 bit) applications, please use riscv64-unknown-elf-gdb instead of

riscv32-unknown-elf-gdb.

5.4.2 Application flow

RESET HARDWARE BOOT CORE INIT APPLICATION

DRIVER

MEM INIT REG INIT DRIVER INIT

i/o operation

4

Figure 8: Execution flow, after every reset

36

5.5 Running application in Standalone mode

Until now, we have been running applications in Debug mode. We need a Host PC to

build and run the application every time. In standalone mode, on reset, application

starts running. The application is no longer downloaded from the PC through a debugger

and executed. Instead, it is stored in the flash memory. When the system starts, the

boot loader loads the application from the flash memory to the physical memory (RAM).

Then the control transfers to the application residing in RAM. This mode of running the

application is usually used in standalone systems.

5.5.1 Steps to generate standalone user application

The make upload command is used to build and upload the application to the flash

automatically. The SHAKTI-SDK has a uploader tool that is used to load a content (such

as ELF) to flash, after building the image.

$ cd shakti-sdk

$ make upload PROGRAM= <bare metal appln> TARGET=pinaka

Interpreting above commands:

• PROGRAM is the new bare metal user application that is created. It is listed by

typing "make list_applns".

• TARGET= pinaka, refers to the target SoC.

Tip: It is always better to run the program in debug mode and once you are confident

that there are no bugs, then use the standalone mode.

37

Appendices ASECTION

Device pin mapping

The Device Pin Mapping corresponding to all the three different SoC’s is listed below.

The pin mapping is same for all the three SoC’s.

A.1 PINAKA, PARASHU and VAJRA

Sl. No Pin Description Pin mapping Peripheral

1.1 GPIO0 CK_IO[0] (J4[1],IO - Lower) GPIO

1.2 GPIO1 CK_IO[1] (J4[3],IO - Lower)

1.3 GPIO2 CK_IO[2] (J4[5],IO - Lower)

1.4 GPIO3 CK_IO[3] (J4[7],IO - Lower)

1.5 GPIO4 CK_IO[4] (J4[9],IO - Lower)

1.6 GPIO5 CK_IO[5] (J4[11],IO - Lower)

38

Sl. No Pin Description Pin mapping Peripheral

1.7 GPIO6 CK_IO[6] (J4[13],IO - Lower)

1.8 GPIO7 CK_IO[7] (J4[15],IO - Lower)

1.9 GPIO8 CK_IO[8] (J2[1],IO - Higher)

1.10 GPIO9 CK_IO[9] (J2[3],IO - Higher)

1.11 GPIO10 CK_IO[10] (J2[5],IO - Higher)

1.12 GPIO11 CK_IO[11] (J2[7],IO - Higher)

1.13 GPIO12 CK_IO[12] (J2[9],IO - Higher)

1.14 GPIO13 CK_IO[13] (J2[11],IO - Higher)

1.15 GPIO14 JB [3] - 2P

1.16 GPIO15 JB [4] - 2N

1.17 GPIO16 LD4

1.18 GPIO17 LD5

1.19 GPIO18 LD6

1.20 GPIO19 LD7

1.21 GPIO20 BTN0

39

Sl. No Pin Description Pin mapping Peripheral

1.22 GPIO21 BTN1

1.23 GPIO22 BTN2

1.24 GPIO23 BTN3

1.25 GPIO24 JD[1] -1P

1.26 GPIO25 JD[2] -1N

1.27 GPIO26 JD[3] -2P

1.28 GPIO27 JD[4] -2N

1.29 GPIO28 JD[7] -3P

1.30 GPIO29 JD[8] -3N

1.31 GPIO30 JD[9] -4P

1.32 GPIO31 JD[10] -4N

2.1 ADC P4,N4 CKA0 Single ended ADC

2.2 ADC P5,N5 CK A1

2.3 ADC P6,N6 CK A2

40

Sl. No Pin Description Pin mapping Peripheral

2.4 ADC P7,N7 CK A3

2.5 ADC P15,N15 CK A4

2.6 ADC P0,N0 CK A5

3.1 ADC 12P CK A6 Double ended ADC

3.2 ADC 12N CK A7

4.1 ADC 13P CK A8 Double ended ADC

4.2 ADC 13N CK A9

5.1 ADC 14P CK A10 Double ended ADC

5.2 ADC 14N CK A11

6.1 I2C0_SDA JB_P[1] I2C0

6.2 I2C0_SCL JB_N[1]

7.1 I2C1_SDA CK_SDA I2C1

7.2 I2C1_SCL CK_SCL

8.1 UART0 TX J10 UART

8.2 UART0 RX J10

41

Sl. No Pin Description Pin mapping Peripheral

9.1 UART1 TX CK_IO[1] (J4[3],IO - Lower)

9.2 UART1 RX CK_IO[0] (J4[1],IO - Lower)

10.1 UART2 TX CK_IO[3] (J4[7],IO - Lower)

10.2 UART2 RX CK_IO[2] (J4[5],IO - Lower)

11.1 PWM 0 CK_IO[3] (J4[7],IO - Lower) PWM PINS

11.2 PWM 1 CK_IO[5] (J4[11],IO - Lower)

11.3 PWM 2 CK_IO[6] (J4[13],IO - Lower)

11.4 PWM 3 CK_IO[9] (J2[3],IO - Higher)

11.5 PWM 4 CK_IO[10] (J2[5],IO - Higher)

11.6 PWM 5 CK_IO[11] (J2[7],IO - Higher)

12.1 SPI0 CS QSPI_CS SPI0

12.2 SPI0 SCLK QSPI_DQ[2]

12.3 SPI0 MISO QSPI_DQ[1]

12.4 SPI0 MOSI QSPI_DQ[0]

13.1 SPI1 CS CK_IO[10] (J2[11],IO - Higher) SPI1

42

Sl. No Pin Description Pin mapping Peripheral

13.2 SPI1 SCLK CK_IO[13] (J2[11],IO - Higher)

13.3 SPI1 MISO CK_IO[12] (J2[11],IO - Higher)

13.4 SPI1 MOSI CK_IO[11] (J2[11],IO - Higher)

Table 7: Device pin map

43

BSECTION

Understanding PinMux

design

Example B.1

How to Configure a PinMux Register?

• A pair of bit, maps to a device pin. A device can have one or more pins.

• The bit pair can take values 00, 01, 10. Undefined behavior, for value 11.

• If all the pair of bit’s are zero. Then all the IO pins are configured as GPIO.

• If bits |7 |6| are set to 10. Then, PWM0 is enabled.

• If bits |7 | 6| are set to 01. Then, U2TX is enabled.

PinMux

Config Value

Bit Positions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 - - - - - GP13 GP12 GP11

01 - - - - - S1_CK S1_SO S1_SI

10 - - - - - - - PWM5

Table 8: pinmux memory map (upper bytes)

44

PinMux

Config Value

Bit Positions

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

00 GP10 GP9 GP6 GP5 GP3 GP2 GP1 GP0

01 S1_CS - - - U2TX U2RX U1TX U1RX

10 PWM4 PWM3 PWM2 PWM1 PWM0 - - -

Table 9: pinmux memory map (lower bytes)

Note:

1. The above tables are used for configuring GPIO pins as I2C, PWM, SPI & UART.

2. For example UART needs two pins. Therefore, UART Tx and Rx pins are configured

to use the GPIO pins as UART. Similarly, SPI needs 4 pins.

3. Peripherals not mentioned in this table have their own dedicated pins.

4. U1 & U2 corresponds to UART1 and UART2.

5. S1 in the table corresponds to SPI1.

5. - denotes these bit position are unused.

45

CSECTION

Reach us at!

Any issues or clarification in SDK or documentation can be raised under issues in the

following url https://gitlab.com/shaktiproject/software/shakti-sdk. Before

raising an issue, please check if there are any similar issues.

C.1 Steps to create an issue

• Go to Issues.

• After clicking on New Issue you will get an option to select a template.

• Click on choose template, list of available templates will be displayed, Select template

"Bug".

• Once the template named ’Bug’ is selected, the description text box is populated

by the template.

• Please fill all the fields in the description text box.

46

https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/software/shakti-sdk/-/issues

5SECTION

Bibliography

[1] N. Gala, A. Menon, R. Bodduna, G. S. Madhusudan and V. Kamakoti, "SHAKTI

Processors: An Open-Source Hardware Initiative," 2016 29th International

Conference on VLSI Design and 2016 15th International Conference on Embedded

Systems (VLSID), Kolkata, 2016, pp. 7-8.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7434907&
isnumber=7434885

[2] Design of the RISC-V Instruction Set Architecture

https://riscv.org/specifications/

[3] SHAKTI Processor Program Open-source Processor Development Ecosystem

https://shakti.org.in

[4] Shakti Software Development Kit

https://gitlab.com/shaktiproject/software/shakti-sdk

[5] SHAKTI C-class Micro Architecture Design

https://gitlab.com/shaktiproject/cores/c-class

[6] SHAKTI E-class Micro Architecture Design

https://gitlab.com/shaktiproject/cores/e-class

[7] RISC-V Cores

https://riscv.org/risc-v-cores/

[8] RISC V Tool Chain

https://gitlab.com/shaktiproject/software/riscv-tools

47

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7434907&isnumber=7434885
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7434907&isnumber=7434885
https://riscv.org/specifications/
https://shakti.org.in
https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/cores/c-class
https://gitlab.com/shaktiproject/cores/e-class
https://riscv.org/risc-v-cores/
https://gitlab.com/shaktiproject/software/riscv-tools

[9] Generated RISC V Tool Chain

https://gitlab.com/shaktiproject/software/shakti-tools

[10] Zephyr Project and Zephyr OS Kernel, [online],

https://www.zephyrproject.org

[11] Arty A7-100T and 35T with RISC-V

https://www.digikey.in/en/product-highlight/x/xilinx/
arty-a7-100t-and-35t-with-risc-v

[12] Pinaka

https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a35

[13] Parashu

https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a100

[14] Vajra

https://gitlab.com/shaktiproject/sp2020/-/tree/master/c64-a100

[15] Xilinx Ethernet Lite

https://www.xilinx.com/products/intellectual-property/temac.html#
documentation

[16] PlatformIO Extensions for VSCODE

https://platformio.org/

[17] SHAKTI Support on PlatformIO

https://github.com/platformio/platform-shakti

[18] SHAKTI Support on FreeRTOS

https://gitlab.com/shaktiproject/software/FreeRTOS

48

https://gitlab.com/shaktiproject/software/shakti-tools
https://www.zephyrproject.org
https://www.digikey.in/en/product-highlight/x/xilinx/arty-a7-100t-and-35t-with-risc-v
https://www.digikey.in/en/product-highlight/x/xilinx/arty-a7-100t-and-35t-with-risc-v
https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a35
https://gitlab.com/shaktiproject/sp2020/-/tree/master/e32-a100
https://gitlab.com/shaktiproject/sp2020/-/tree/master/c64-a100
https://www.xilinx.com/products/intellectual-property/temac.html#documentation
https://www.xilinx.com/products/intellectual-property/temac.html#documentation
https://platformio.org/
https://github.com/platformio/platform-shakti
https://gitlab.com/shaktiproject/software/FreeRTOS

	Proprietary Notice
	Release Information
	Brief Introduction to SHAKTI
	Processors
	E-class
	C-class

	Software
	SHAKTI-SDK
	PlatformIO IDE
	Supported Operating systems

	Board Details
	Development boards
	Board Availability
	Documentation

	Board setup
	Powering the board
	Setting up the Debugger
	Debug interface over Xilinx FTDI (recommended)

	Programming SHAKTI
	Prerequisites
	Tool Installation
	Programming PINAKA (e32-a35) mcs File onto the FPGA
	Programming PARASHU(e32-a100) mcs File onto FPGA
	Programming Vajra (c64-a100) mcs File onto FPGA
	Programming SHAKTI onto the Arty7 boards with readily available '.mcs' file

	SoC Device Information
	Device memory map
	PINAKA memory map
	PARASHU memory map
	VAJRA memory map

	Software Development Flow
	SHAKTI-SDK Architecture
	Board Support Package
	Software
	Makefile

	Setting up the SHAKTI-SDK
	Pre-requisites
	Download the SHAKTI-SDK repository
	Download the SHAKTI-TOOLS repository
	Setting up SHAKTI Tool-chain
	Update the SDK or TOOLS

	Application Development
	Steps to add a new application to SHAKTI-SDK
	My first program !
	Build
	Run

	Running application in Debug mode
	Steps to run
	Application flow

	Running application in Standalone mode
	Steps to generate standalone user application

	Appendices
	Device pin mapping
	PINAKA, PARASHU and VAJRA

	Understanding PinMux design
	Reach us at!
	Steps to create an issue

	Bibliography

