
Platform Level Interrupt
Controller(PLIC)

User Manual
(SP2020)

developed by: SHAKTI Development Team @ iitm ’20

shakti.org.in

contact @ shakti[dot]iitm[@]gmail[dot]com

shakti [dot] iitm [@] gmail [dot] com

1

0.1 Proprietary Notice

Copyright © 2020, SHAKTI @ IIT Madras.

All rights reserved. Information in this document is provided “as is,” with all
faults.

SHAKTI @ IIT Madras expressly disclaims all warranties, representations,
and conditions of any kind, whether express or implied, including, but not
limited to, the implied warranties or conditions of merchant ability, fitness for a
particular purpose and non-infringement.

SHAKTI @ IIT Madras does not assume any liability rising out of the
application or use of any product or circuit,and specifically disclaims any and
all liability, including without limitation indirect, incidental, special, exemplary,
or consequential damages.

SHAKTI @ IIT Madras reserves the right to make changes without further
notice to any products herein.

The project was funded by MeITY, Government of India

2

0.2 Release Information

Version Date Changes

0.1 October 8, 2020 Initial Release

0.2 November 15, 2020 Address review comments

Table of Contents

0.1 Proprietary Notice . 1
0.2 Release Information . 2

1 Introduction 4
1.1 External Interrupts . 4
1.2 Understanding PLIC working . 5

2 Memory Register map 7

3 PLIC High Level Design 8
3.1 Interrupt Sources . 8
3.2 Interrupt Life cycle . 9
3.3 Priority Threshold Register . 10
3.4 Interrupt Claim Register . 10
3.5 Interrupt Priority Register . 11
3.6 Interrupt Enabled Register . 12
3.7 Interrupt Pending Register . 14
3.8 Interrupt Completion Register . 15

4 References 16

Bibliography 16

3

41SECTION

Introduction

The Platform Level Interrupt Controller (PLIC) user manual helps in understanding
the working of interrupts in the SHAKTI SoC. This manual is particular about han-
dling interrupts in software and the memory mapped registers involved in the PLIC.
To understand the specification of PLIC, please refer RISC-V Privileged Specifica-
tion, Version 1.10 [1]. The PLIC is a device designed to handle interrupts other than
timer and software in RISC-V. The PLIC discussed here complies with the RISC-V
Privileged Specification, Version 1.10 [1]. All the abbreviations and definitions not
expanded are taken forwarded from RISC-V Privileged Specification, version 1.10.
This user manual specifically deals with the SoCs for Swadeshi Microprocessor com-
petition. The bare metal PLIC driver code for the SOC’s, can be found here [3].

1.1 External Interrupts

Interrupts are asynchronous events generated by a external source through hardware.
The processor services the interrupts. In RISC-V interrupts are classified into timer,
software and external interrupts. The external interrupts are also called as global
interrupts. Timer and software interrupts are handled by a Core Local Interrupt
(CLINT). External interrupts are handled by the PLIC.

https://gitlab.com/shaktiproject/software/shakti-sdk/-/tree/master/bsp/drivers/plic

5

1.2 Understanding PLIC working

The PLIC connects the global interrupt sources to the interrupt target i.e., core. The
PLIC consists of the ”PLIC core” and the ”Interrupt gateways”. There are multiple
interrupt gateways, one per interrupt source. Global interrupts are sent from their
source to one of the interrupt gateway. The interrupt gateway processes the arriving
interrupt signal from each source and sends a single interrupt request to the PLIC
core. The PLIC core contains a set of interrupt enable (IE) bits to enable individ-
ual interrupt sources in the PLIC. The PLIC core contains pending interrupt bits
to signal that an interrupt is waiting to be processed. Also, PLIC core performs
interrupt prioritization/arbitration. Each interrupt source is assigned a separate pri-
ority. The PLIC core latches the interrupt request into the Interrupt Pending bits
(IP). Whenever, the priority of the pending interrupt exceeds a per-target threshold,
the PLIC core forwards an interrupt notification to the interrupt target. The PLIC
Claim/Complete register holds the highest priority interrupt waiting to be processed.

The interrupt is taken by the core (Hart1) and handed over to the software application.
The software application has a PLIC interrupt handler to service the interrupts.
Before the interrupt is received by the software application, the core copies the value of
mstatus.MIE into mstatus.MPIE, and then mstatus.MIE bit is cleared. This disables
any new interrupts. The privilege mode prior to the interrupt is set mstatus.MPP
bit. The privilege mode is set to Machine mode. The current value of PC is copied to
MEPC register. Then, the core sets the Program Counter (PC) to point to ”mtvec”
base address [1]. The base address holds the Interrupt handler routine. Once the
interrupt is serviced, the core sends the associated interrupt gateway, an interrupt
completion message. The interrupt completion message usually writes the interrupt
id to the PLIC Claim/Complete register. On, interrupt completion, the saved context
is restored by the software application. Usually the core sets the privilege mode to
the value encoded in mstatus.MPP. And the PC is set to the value of mepc. The
value of mstatus.MPIE bit is copied into mstatus.MIE bit. This essentially enables
all the interrupts. The interrupt gateway can now forward another interrupt request
to the PLIC.

1Hart refers to a Hardware Thread

6

Global int src 3

Global int src 2

Global int src 0

Global int src 4

Global int src 5

Global int src 6

PLIC core

Interrupt
Gateway1

Interrupt
Gateway2

Hart 0 Hart context 0
Int notify Yes

Figure 1: High level PLIC interaction diagram [1]

72SECTION

Memory Register map

Register Address Data Width Permission Description

0x0C000000 4 bytes RW Source 0 priority (BASE ADDR)

0x0C000004 4 bytes RW Source 1 priority

0x0C000010 4 bytes RW Source 8 priority

. . . . 4 bytes RW

0x0C0006c 4 bytes RW Source 27 priority (End)

0x0C001000 8 bits RO Pending interrupt - sources 0 to 7

0x0C001001 8 bits RO Pending interrupt - sources 8 to 15

0x0C001002 8 bits RO Pending interrupt - sources 16 to 23

0x0C001003 8 bits RO Pending interrupt - sources 24 to 27

0x0C002000 8 bits RW Interrupt enabled - sources 0 to 7

0x0C002001 8 bits RW Interrupt enabled - sources 8 to 15

0x0C002002 8 bits RW Interrupt enabled - sources 16 to 23

0x0C002003 8 bits RW Interrupt enabled - sources 24 to 27

0X0C010000 4 bytes RW Priority Threshold register

0X0C010010 4 bytes RW Interrupt Claim/Complete

Table 1: PLIC register memory map, for SHAKTI SoC [2]

83SECTION

PLIC High Level Design

3.1 Interrupt Sources

The source of interrupts for PLIC are the devices connected to the SoC (GPIO,
UART, I2C, etc...). As per the RISC-V specification version 1.10, these are termed
as global interrupt sources. Global interrupt sources can take many forms, including
level-triggered, edge-triggered, and message-signalled. In SHAKTI, all the interrupts
are positive level triggered.

The PLIC in SHAKTI SoC has 27 interrupt sources. 16 of these are exposed at the
top level via the GPIO pins. Other Interrupt sources are pin-muxed with GPIO pins
(like I2C, PWM and UART). These device interrupts can be used by configuring
the pinmux registers appropriately. If pinmux register value is zero, all the pins are
GPIO configured. As specified in the RISC-V priv spec, V 1.10, Global Interrupt ID
0 is reserved and hardwired to zero [1]. Interrupt ID’s starting from 1 are valid.

S.No Interrupt Id Device

1 1 - 6 PWM

2 7-22 GPIO0 - GPIO15

3 23-24 I2C0 - I2C1

4 25-27 UART0 - UART2

Table 2: PLIC Interrupt ID to Interrupt source mapping

9

3.2 Interrupt Life cycle

Start

Interrupt triggered

Interrupt
Gatewayi

PLIC core

Set PI bit &
assign Pri

Interrupt enable?

Valid pri?

Hart0 ?
set csr regs

priv mode = M
jump to mtvec

process trap

claim Int (read
claim reg)

PLIC ?

Valid ?

Interrupt
handler

Complete
interrupt

Ignore Interrupt

Int Req

read cmd

Int id

Int id

Yes

Control transfer to S/W

Yes

write int id

Yes

Yes

Yes
Int notification

No

PLIC

SW

Hart

Figure 2: High level Interrupt flow chart PLIC - HART - SW

10

3.3 Priority Threshold Register

The threshold priority level is set via the Priority Threshold Register. This
register is a WARL field, where the PLIC supports a maximum threshold of
2. An interrupt line with a priority less than the threshold, is masked. As an
example, a threshold value of zero permits all interrupts with non-zero priority.

Example 3.1

1. How to extract the priority threshold register address ?

priority threshold addr = (uint32 t ∗)(PLIC BASE ADDRESS

+ PLIC THRESHOLD OFFSET)

2. How to set the priority threshold ?
Let threshold value be the variable holding the value in the priority
threshold register.

threshold value = n, for 0 ≤ n ≤ 2

3.4 Interrupt Claim Register

The interrupt claim is performed by reading the interrupt claim register. The
claim register returns the ID of the highest-priority pending interrupt. A value
of zero is returned, if there is no pending interrupt. A successful claim clears
the corresponding pending bit in the interrupt pending register, atomically. A
interrupt claim can be performed at any time, even if the MEIP bit in its MIP
register is not set. The claim operation is not affected by the configuration of
the priority threshold register.

Example 3.2

1. How to get the active interrupt id ?

interrupt id = (uint32 t ∗) (PLIC BASE ADDRESS +

PLIC CLAIM OFFSET)

11

3.5 Interrupt Priority Register

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit
memory-mapped priority register. Three levels of priority are supported: A
priority value of 0 is reserved to mean ”never interrupt” and effectively disables
the interrupt; Priority 1 is the lowest active priority, and priority 2 is the highest.
Ties between global interrupts of the same priority are broken by the Interrupt
ID; interrupts with the lowest ID have the highest effective priority.

Priority level Priority value Hex value

1 0x00000000 0x00

2 0x00000001 0x01

3 0x00000010 0x02

Table 3: Valid priority values

Interrupt Id Priority Register address

0 0x0C000000 (reserved)

1 0x0C000004

2 0x0C000008

31 0x0C00007C

Table 4: PLIC Interrupt Priority Registers

Example 3.3

How to extract the Interrupt priority register address for a particular in-
terrupt id (int id) ?

interrupt priority address = (uint32 t ∗) (PLIC BASE ADDRESS +

PLIC PRIORITY OFFSET

12

3.6 Interrupt Enabled Register

Each global interrupt can be enabled by setting the corresponding interrupt bit
in the interrupt enabled register. The interrupt enabled registers are accessed as
a contiguous array of 8 bytes. Bit 0 of of the first byte represents the non-existent
interrupt ID 0 and is hardwired to 0. Bit 1 of the first byte, represent the global
interrupt 1. Bit 7 of the fourth byte represent the global interrupt id 31. All
the bits in the Interrupt pending register are R/W enabled. The enabled bit for
interrupt ID N is stored in N mod 8 bit in the N/8 th byte.

Int id Byte offset Bit position Description(Enable-1,Disable-0)

0 0 0 Hardwired to zero

1 0 1 Global interrupt source 2

2 0 2 Global interrupt source 3

7 0 0 Global interrupt source 8

8 1 0 Global interrupt source 9

16 2 0 Global interrupt source 17

24 3 0 Global interrupt source 25

27 3 4 Global interrupt source 28

Example 3.4

1. How to extract the byte addressable interrupt enabled register address
for a particular interrupt int id ?

interrupt enable address = (uint8 t ∗)(PLIC BASE ADDRESS +

PLIC ENABLE OFFSET +

(int id >> 3))

13

Example 3.5

How to enable an interrupt in PLIC ?

• To enable an interrupt, the bit position corresponding to the interrupt
source is set to 1 in Interrupt enable register.

• Let current value, hold the value in interrupt enable register value.

• Let new value holds the value of interrupt enable register after inter-
rupt int id is reset.

new value = {current value | (0× 1 << (int id % 32))}

Example 3.6

How to disable an interrupt ?

• To disable an interrupt, the bit position corresponding to the inter-
rupt source is set to 0 in Interrupt enable register.

• Let current value hold the value in interrupt enable register.

• Let new value holds the value of interrupt enable register after inter-
rupt int id is reset.

new value = {current value & (¬(0× 1 << (int id % 32)))}

14

3.7 Interrupt Pending Register

The current status of the interrupts pending in the PLIC core can be read from
the interrupt pending register. The interrupt pending register is a set of 2, 32
bit words. It can be seen as a array of 8 bytes. The pending bit of interrupt id
0 is stored in LSB of first pending register. The pending bit for interrupt ID N
is stored in the N mod 8th bit of N/8th byte.

The SHAKTI SoC has 2 interrupt pending registers. Bit 0 of byte 0 represents
the non-existent interrupt source 0 and is hardwired to zero. A pending bit in the
PLIC core can be cleared by setting the associated enable bit then performing
a claim as described in section. The content of the Interrupt pending register is
read-only.

Int id Byte offset Bit position Int pending register Register address

0 0 0

1

0x0C001000

1 0 1

8 1 0 0x0C001001

24 3 0 0x0C001003

Table 5: Reading the bits in Interrupt pending register

Example 3.7

1. How to extract the Interrupt Pending Register bit for a particular inter-
rupt int id ?

interrupt pending bit = (PLIC BASE ADDRESS +

PLIC PENDING OFFSET +

(int id >> 3))

15

3.8 Interrupt Completion Register

The PLIC signals it has completed handling the interrupt by writing the interrupt
ID to the Interrupt complete register. The PLIC does not check whether the
completion ID is the same as the last claim ID for that target. If the completion
ID does not match a global interrupt source that is currently enabled for the
target, the completion signal is silently ignored. A write to this register signals
completion of the interrupt id. The Interrupt claim and Interrupt complete
registers are memory mapped to same address.

Example 3.8

1. How to do an interrupt completion for interrupt int id ?

complete addr = (uint32 t ∗) (PLIC BASE ADDRESS +

PLIC CLAIM OFFSET)

∗complete addr = int id

164SECTION

References
4SECTION

Bibliography

[1] Chapter 7, Platform-Level Interrupt Controller (PLIC), The RISC-V In-
struction Set Manual Volume II: Privileged Architecture, Privileged Ar-
chitecture Version 1.10 https://github.com/riscv/riscv-isa-manual/
releases/download/archive/riscv-privileged-v1.10.pdf

[2] SHAKTI Swadeshi Microprocessor Challenge 2020 SoC Repository https:
//gitlab.com/shaktiproject/sp2020

[3] PLIC driver for SHAKTI SoC’s https://gitlab.com/shaktiproject/
software/shakti-sdk/-/tree/master/bsp/drivers/plic

https://github.com/riscv/riscv-isa-manual/releases/download/archive/riscv-privileged-v1.10.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/archive/riscv-privileged-v1.10.pdf
https://gitlab.com/shaktiproject/sp2020
https://gitlab.com/shaktiproject/sp2020
https://gitlab.com/shaktiproject/software/shakti-sdk/-/tree/master/bsp/drivers/plic
https://gitlab.com/shaktiproject/software/shakti-sdk/-/tree/master/bsp/drivers/plic

	Proprietary Notice
	Release Information
	Introduction
	External Interrupts
	Understanding PLIC working

	Memory Register map
	PLIC High Level Design
	Interrupt Sources
	Interrupt Life cycle
	Priority Threshold Register
	Interrupt Claim Register
	Interrupt Priority Register
	Interrupt Enabled Register
	Interrupt Pending Register
	Interrupt Completion Register

	References
	Bibliography

