
SHAKTI C-Class SoC Verification

Lavanya Jagadeeswaran

Project Manager | SHAKTI Lab | RISE Group

https://www.linkedin.com/in/lavanya-jagadeeswaran/

This Session

2

What is an ISA ?

What does any ISA Specification define

● Instruction Encodings
○ Eg. instruction addi -> ‘b0010011

● Register files
○ Eg. x0-x31

○ Control and Status Registers

● Modes of operation

RISC-V Implementation & Why we need it ?
● Numerous processor implementations based on RISC-V

○ IITM’s SHAKTI Class of processors, CDAC’s VEGA, SiFive’s Rocket, Freedom, OpenHW’s
CV32E40P, CVA6 and many more

● The specification defined in terms of hardware design is known as its
implementation

● Isolation of architecture from implementation

● In order to bring out a bug free implementation, verification engineers are
expected understand the architecture and basic underlying principles governing
the implementation

○ Pipelining: Hazards, Memory hierarchy, Branch predictions, In order, Out-of-order processors

How to verify them ?

Verification - Catch bugs!

IMPLEMENTATION

SPECIFICATION

VERIFICATION IMPLEMENTATION

● Demonstrates functional correctness
● Based on the same specification
● Bug escapes to silicon is costly
● More than 50% of resource (time,

money, manpower) spent on
verification

SHAKTI Verification

● SHAKTI Verification is based on open-source tools and the framework
is maintained commonly for various classes of RISC-V cores like
C-Class, E-Class, I-Class maximizing reuse.

● Comprehensive suites of directed and random assembly tests are
simulated on the Bluespec generated verilog design using Verilator

● Processor verification incorporates ISA level state checking at every
instruction execution along with end of test memory check.

● Self-checking frameworks are developed to aid simulation and FPGA
level verification

7

SHAKTI Verification Levels

8

▪ Block level
▫ UVM methodology
▫ Interaction with DUT

using CoCoTb libraries
▪ Core level

▫ RISC-V core verification
▫ Framework generating

and simulating
directed/random tests

▪ System level
▫ Simulation & FPGA based

verification

Generic Verification Methodology

● Feature
extraction

● Test scenarios
● Checking /

Coverage of test
feature

Test Plan
Preparation

● Test Bench
Components

● Constraint random
test sequences

● Coverage
definition

Test Bench
Development

● Shift left
approach

● Continuous
Integration (CI)

Regression
Setup

● Coverage closure
● Code and

functional
coverage

● 100% holes
explained

Sign-off

Verification Challenges

Ref: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

Why Verification is Important ?!

Refs:

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

https://www.anandtech.com/show/4143/the-source-of-intels-cougar-point-sata-bug

https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigation-cost-by-device-type/

Bug Year Loss

Intel’s FDIV Bug 1994 $475 million for replacements ~ $752
million in 2020.

Intel’s Cougar Point
chipset problem

2011 $300 million in lost sales and $700
million in repairs

Spectre and Meltdown
Secutiry Flaws Affect
Intel, ARM, and AMD

2018 ~ $18 billion

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://www.anandtech.com/show/4143/the-source-of-intels-cougar-point-sata-bug
https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigation-cost-by-device-type/

Emerging Trends

Ref: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

Verification
in Python!

.

RISC-V Verification Components

RISC-V Toolchain for
Test Compilation

Test Suite Development
& Generation

Reference Model
Development

Test Bench for
Processor State

Comparison

Regression &
Coverage Collection

Verification Components - Test Development

● For RISC-V core verification purposes, self checking
assembly tests are used
○ riscv-tests
○ riscv-arch-tests
○ Implementation specific tests

● RISC-V Random test generation
○ Shakti’s AAPG
○ RISCV-Torture
○ Google’s RISCV-DV
○ MicroTesk
○ Force-RISCV

14

RISC-V Toolchain for
Test Compilation

Test Suite Development
& Generation

Reference Model
Development

Test Bench for
Processor State

Comparison

Regression &
Coverage Collection

Verification Components - Test Compilation (SW)

● riscv-gnu-toolchain
● For custom extensions, toolchain support has

to be added

15

RISC-V Toolchain for
Test Compilation

Test Suite Development
& Generation

Reference Model
Development

Test Bench for
Processor State

Comparison

Regression &
Coverage Collection

https://github.com/riscv/riscv-gnu-toolchain

Verification Components - Reference Model

● Spike, the Instruction Set Simulator is used as
the reference model

● Alternate commercial support: riscvOVPSim

16

RISC-V Toolchain for
Test Compilation

Test Suite Development
& Generation

Reference Model
Development

Test Bench for
Processor State

Comparison

Regression &
Coverage Collection

Verification Components - Test Bench

● Shakti’s C-Class employs log based processor
state comparison and UVM based verification
environment

● Processor State:
○ XPR, FPR and CSR. mem on loads/stores

17

RISC-V Toolchain for
Test Compilation

Test Suite Development
& Generation

Reference Model
Development

Test Bench for
Processor State

Comparison

Regression &
Coverage Collection

Verification Components - Regression

● Shift-Left Approach
● Design and verification starts in parallel
● Verification support incrementally added based

on the design feature addition
● Design merge triggers smoke regression
● Nightly regression using Continuous

Integration

18

RISC-V Toolchain for
Test Compilation

Test Suite Development
& Generation

Reference Model
Development

Test Bench for
Processor State

Comparison

Regression &
Coverage Collection

SHAKTI SoC Verification Summary

19

SHAKTI C-Class System Level Verification
● SHAKTI C-Class is connected to the

SoC subsystem using the AXI4

interface

● SHAKTI C-Class core Verfication with

Assembly test cases

● Memory Mapped Peripherals and

accelerators

SHAKTI SoC Sub-System Level Verification
● AXI4 interface as a common

driver component

● By generating various AXI

transactions to the

sub-system, the SoC is being

verified.

● The transactions can be

towards verifying a Single IP or

the whole interactions with the

subsystem

● CoCoTb VIPs used for

Verification

Constraint random tests

Test bench components

Reference model development

Coverage definition

Continuous integration

Python based SHAKTI SoC Verification

References

- RISC-V History: https://riscv.org/about/history/

- RISC-V Specifications https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications

- Computer Organization and Design: The hardware / software interface - By David A. Patterson and John L. Hennessey

- The RISC-V Reader: An Open Architecture Atlas authored by David Patterson, Andrew Waterman

- SHAKTI AAPG: https://gitlab.com/shaktiproject/tools/aapg

- riscv-dv: https://github.com/google/riscv-dv

- riscv-tests: https://github.com/riscv/riscv-tests

- riscv-torture: https://github.com/ucb-bar/riscv-torture

- spike: https://github.com/riscv/riscv-isa-sim

- CoCoTb: https://www.cocotb.org/

- UART CoCoTb Ext: https://github.com/alexforencich/cocotbext-uart

https://riscv.org/about/history/
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://gitlab.com/shaktiproject/tools/aapg
https://github.com/google/riscv-dv
https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture
https://github.com/riscv/riscv-isa-sim
https://www.cocotb.org/
https://github.com/alexforencich/cocotbext-uart

© Vyoma Systems Pvt Ltd© Vyoma Systems Pvt Ltd

Thank You

