

GRAND CHALLENGE - 2025

IP Porting with Shakti SoC

DEVELOPED BY :
SHAKTI DEVELOPMENT TEAM @ IITM

SHAKTI.ORG.IN

IIT Madras

Introduction
Three variants are there to port peripheral IPs with Shakti.

Steps involved in porting peripheral IPs with Shakti.

● Do the following in soc.defines.
○ Add one more slave number for the new IP .
○ Add a memory map for the same.

● Do the following in the soc.bsv or cluster file(uart_cluster, pwm cluster, etc.) based on
the implementation.

○ Make one instance of the IP interface to be ported.
○ Check for the memory map of the IP and set the slave number for the new IP.
○ Connect AXI4(lite) of the core with peripheral’s AXI4(lite).
○ If necessary take the interface to the top file (fpga_top.v).
○ Take the interrupt pins to the top level or PLIC based on the implementation.

● Do the following in the fpga_top.v
○ Declare the IO pads for the peripheral.
○ Map them to the mkSoc.
○ If the pin(s) are bidirectional, connect them through an IO buffer.

● Do the following in the constraints.xdc.
○ Add signal to pin mapping for all the IO pads.

Integrating Slow peripherals with Shakti:

Slow peripherals operate @ lower frequencies from few Hz to few MHz (upto 25MHz). They
can be integrated with Shakti core using the AXI4 Lite interface which is slow fabric.

The peripherals like SPI, UART, I2C, GPIO, etc. are interfaced with Shakti using the
following logic. In addition, it is assumed that the peripheral IP is already integrated with
Shakti. The objective is to add one more additional interface of the same type.

Normally these peripherals are interfaced with Core through clusters (e.g. UART Cluster, SPI
cluster, PWM cluster, Mixed cluster, etc.). This section explains how to add the existing IPs
to the core.
It is assumed that the shakti core is taken from sp2020 gitlab repo
(https://gitlab.com/shaktiproject/sp2020).

Hierarchy

For UART the hierarchy is as follows (leftmost is the top file),

Soc ← uart_cluster

IIT Madras

All the Memory mapping details will be in the Soc.defines file.

IIT Madras

Memory Mapping

All the slow peripherals will be placed in the range of Slow fabric memory allocation. UART
peripheral also will fall in this range.

IIT Madras

In this file the Slow fabric memory allocation has further separate memory range allocated
for UART instances alone which is termed as UART cluster, all the memory mapping of the
UART instances will be in this range.

Slow fabric → UART cluster → UART instance

Same like UART clusters there are also clusters for SPI and PWM to accommodate SPI &
PWM IPs, all the remaining peripherals will be placed in the Mixed cluster.

Adding one more cluster IP:
This section shows the integration for one more UART IP in the UART cluster.
The files that needs to be modified are

● soc.bsv
● soc.defines
● uart_cluster.bsv
● mixed_cluster.bsv
● fpga_top.v

IIT Madras

● constraints.xdc

1. Make the following changes in the “soc.defines”.
Step 1 (Increase the UART Cluster memory range):

Increase the UART Cluster memory map from

to

IIT Madras

Step 2 (Increase the number of UART slaves):
Increase the “UARTCluster_Num_Slaves” from 4 to 5.

IIT Madras

From “4” to “5”.

IIT Madras

Step 3 (Add slave number for the new UART IP):
Add a slave number for the new slave UART. i.e. Change the

IIT Madras

to

IIT Madras

Step 4 (Add memory range for the new UART being added):
Add a memory map to the new UART.

IIT Madras

i.e . Add memory map

IIT Madras

2. Make the following changes in the “uart_cluster.bsv”
Step 1 (Add condition for memory range check):
Add if condition for new uart i.e. change the code from

to

IIT Madras

Step 2 (Make one more instance for new UART):
Add UART Interface i.e. Change the code from

IIT Madras

to

IIT Madras

Step 3 (Add one more bit to take interrupt to Soc.bsv):
Add one more bit for the new UART Interrupt i.e. change the code from Bit#(3)

to Bit#(4)

IIT Madras

Setp 4 (Add a UART module instance by assigning it to a new interface instance):
Add one more instance for the UART interface i.e. change the code from

IIT Madras

to

IIT Madras

Step 5 (Connect the AXI4 interface with new UART):
Make a connection to the AXI4 interface i.e. Change the code from

to

IIT Madras

Step 6 (Add a new UART interface instance to take the UART interface from uart
cluster into fpga_top.v):
Add a new UART interface to soc.bsv by adding the following i.e. change the code from

IIT Madras

to

Step 7 (Add one more UART Interrupt bit to take the same to PLIC):

IIT Madras

Add an interrupt bit for the new UART i.e. change the code from

To

IIT Madras

3. Make the following changes in the “soc.bsv”.
Step 1(Add one more interface instance for UART to take connect new UART in the
UART cluster to top level file (fpga_top.v):
Make the top interface for “fpga_top.v” i.e add the UART3 interface (UART1 & UART2 are
pin muxed so they are taken care separately) by changing the code from

IIT Madras

to

Step 2 (Assign the new interface to UART cluster interface):

IIT Madras

Assign the interface with UART cluster by changing the code from

to

IIT Madras

4. Make the following changes in the “mixed_cluster.bsv”.
Step 1 (add one more interrupt for new uart):
Do the following changes in mixed_cluster.bsv i.e. increase the interrupt bits from 12 to 13.
Change the code from

to

IIT Madras

Step 2 (interrupts passed as input to PLIC):
Add one more PLIC interrupt i.e. Change the line from

to

IIT Madras

Step 3: Add one more interrupt to PLIC module
Change the number of arguments passed to PLIC module by changing the code from

IIT Madras

to

IIT Madras

Step 4 (add one more bit to take the interrupt from soc.bsv):
Add one more interrupt bit to “wr_external_interrupts” i.e. change the code from

to

IIT Madras

Step 5: Update the method “inp” to take one more interrupt.
Change the code from

to

IIT Madras

5. Make the following changes in the “fpga_top.v”.
Step 1 (add io pad declarations for the UART IO pins):
Add the IO pins for the new UART (depends on the IP being ported). Add two IO pads for
UART3 (similar to UART0 IO pads) i.e. change the following code from

to

IIT Madras

Step 2:
Add new UART IO pins in mkSoc core instance:
Case 1: the IO pins are uni directional (either input or output):
Map mkSoc pins with fpga_top io pins i.e. change the code from

to

IIT Madras

Case 2: The IO pin is bidirectional
This case will be covered in the section “adding ethernet lite IP” section.

6. Make the following changes in the “constraints.xdc”
The signal to pin mapping is done in the constraints.xdc file.
Step 1 (add signal to pin mapping for UART IO pins):
Add the pin mapping for the UART 3 IO pins similar to UART 0 IO pins i.e. change the
following code from

to

Note *: In the above code the pins “xxx” & “yyy” are depending on the Designers choice
with the selected FPGA part number.

This completes the adding IP in one of the existing cluster in SP2020 to the core.

IIT Madras

Integrating Fast peripherals with Shakti:
Next we will be looking into adding the high speed AXI4 link directly. We assume we are
having a module called AES and trying to add the same to the core.

AES tends to operate in a high frequency mostly in equivalence with the core frequency. So
AES will be integrated with the SoC using AXI interface (fast fabric).

The AES is integrated through AXI4 fast fabric, so the memory allocation for AES doesn’t
follow any hierarchy like it is there in the UART. The memory mapping for AES should be
unique in that it doesn’t fall in any of the range that is already in usage.

First clone crypto-box repository for AES,

$ cd sp2020/c64-a100/
$ git clone https://gitlab.com/shaktiproject/cores/crypto-box

Add path for the AES in bsvpath file,
crypto-box/aes_buffer

Add the following command in Makefile

Hierarchy

For AES the hierarchy is as follows (leftmost is the top file),

Soc.bsv is the top file in the case of AES

IIT Madras

https://gitlab.com/shaktiproject/cores/crypto-box

All the Memory mapping details will be in the Soc.defines file.

Increase the Num_Fast_Slaves to 6 as below,

IIT Madras

In Soc file add the memory mapping of the AES instance to the function which will return the
instance (slave number),

IIT Madras

Declare the AES module and pass the required parameters like address width, data width,
user width, clock and reset,

Instantiate the interface of AES inside the module definition of Soc,

The curr_clk and curr_reset is the clock and reset which the core gets, the AES operates at
the frequency at which the core operates in this case. Connect the AXI4 interface of AES to
AXI4 fast fabric,

This completes the integrating fast IP in SP2020 to the core.

IIT Madras

Integration of Ethernet Lite - AXI4 Lite Slave

AXI Ethernet Lite is an IP given by Xilinx which is integrated at fpga_top level. It acts as an
AXI4 LITE slave and is integrated using AXI4 Lite which is a slow fabric. The slave must be
added to fabric in Soc.bsv file and the memory mapping for the slave, adding of a slave
number must be given in Soc.defines file.

In Soc.bsv file, add slave_num for the new slave

Declare eth_master interface:

IIT Madras

Connect eth_master interface to slow fabric.

In Soc.defines file,

1. Increment value of Num_Slaves by 1.
2. Add `define Eth_slave_num n (replace n by the last slave number -1)
3. Change `define Err_slave_num x to `define Err_slave_num x+1 (x being the original

value)

4. Add `define EthBase ‘addr1 and `define EthEnd ‘addr2 . Define addr1 and addr2
such that it does not conflict with other slave addresses and also is within range of
SlowBase and SlowEnd

IIT Madras

● make generate_verilog : to generate updated verilog files
● In fpga_top, the newly generated core’s verilog file will now have the ports

corresponding to eth_master slave.

Generated mkSoc.v with newly added ports for ethernet slave:

● Open project (.xpr file) in Vivado GUI
● Connect the signals from the Ethernet Lite IP to these newly generated ports ports

using wires to integrate the third party IP to the SoC

IIT Madras

Integrating in fpga_top.v:

Initialise new ports:

Initialise all wires:

IIT Madras

Within

mkSoc core(
);

Add the ports for new slave.

Interfacing with AXI-Ethernet Lite IP:

After adding and configuring the AXI-Ethernet Lite IP from IP Catalog (in Vivado GUI), add
the IP instantiation in the fpga_top.v file.

IIT Madras

In Constraints, add the required ports with the appropriate mapping:

IIT Madras

Note:
In sp2020 : c64-a100, the commands for integrating the ethernet lite module have already
been included. Kindly look into that for reference.

IIT Madras

	​GRAND CHALLENGE - 2025
	IP Porting with Shakti SoC
	Introduction
	Hierarchy​
	
	Memory Mapping
	Adding one more cluster IP:
	1.​Make the following changes in the “soc.defines”.
	2.​Make the following changes in the “uart_cluster.bsv”
	3.​Make the following changes in the “soc.bsv”.
	4.​Make the following changes in the “mixed_cluster.bsv”.
	5.​Make the following changes in the “fpga_top.v”.
	6.​Make the following changes in the “constraints.xdc”

	Integrating Fast peripherals with Shakti:
	Hierarchy
	
	Integration of Ethernet Lite - AXI4 Lite Slave

