SHAKTI FPGA Design Flow

SHAKTI Group | CSE Dept | PS-CDISHA - RISE Lab | IIT Madras

Shakti Core

SHAKTI Ecosystem

E class Cclass | class Multicore Secure Shakti ShaktiMAAN
e 32Bit e 64 Bit e 64Bit e C(class HAB For Al/ML workloads
e |nOrder e InOrder e QOut Of Order e (Can be of Mix of Open SBI & U boot Accelerator on AXI Bus
e 3 Stage e 6 Stage e 12 Stage other Variants Hypervisor C Class as Controller
e RV32IMAC e RV64GC e RV64GC e RV64GC RV64GC Custom ISA
< AXI4 | AXI4 LITE
@ PERIPHERALS N

\

UART [

R

[JTAG

I wee ow [snw | scomow | x|

4

SHAKTI Design Portfolio

4

E Class vs C Class vs | Class

=
=
e

O/
0’0

O/
0’0

Operating frequency: Upto 400 MHz
Positioned against ARM's Cortex Mx class cores

Target: loT devices, Edge Devices, Robotic Control, Smart cards

Operating frequency: > 1+ GHz
Positioned against ARM's Cortex A35/A55

Target: Reliable Computing, Secure Computing, loT & Edge Computing
hubs, Auto/Aerospace/Industrial Controls

Operating frequency: 1-2 GHz
Positioned against ARM'’s Cortex A76 (Work in Progress)

Target: High Performance Compute, Mobile, Storage and Networking #7=
segments . ‘

SoC - System On Chip

Integration of a complete
system by replacing a
product/application which needs
multiple chips to a single IC.
Very Large transistor counts on
asingle IC.

Mixed Technology on a same
chip (digital protocols, memory,
analog, etc.).

Modem/
Multimedia

CIS/MEMS
IP

Digital IP

<SHAKTI

Why SoC

Complex applications.
High performance.
Battery Life.

Short market window.
Cost sensitivity.
Modern technologies.

<SHAKTI

SoC Applications

Telecommunications (Ethernet switch, bridge, router, ATM switch, etc.)
Portable Consumer Products (MP3 players, Display systems, Mobiles, etc.)
Multimedia (camera, games, Video).

Embedded Control (Automotive, printers, smart cards, etc).

FPGA - Field Programmable Gate Arrays

What is an FPGA?

e Field Programmable Gate Array (FPGA)

e Reconfigurable Hardware — FPGAs enable dynamic hardware customization.
e HDL Programmability — Designed using HDLs to model chip behavior.

e Post-Deployment Adaptability — Modify functionality even after deployment.

FPGA Technology Giants

AMD (Xilinx): Intel (Altera).

AMDZ
ARTIX?

[1] https:/www.amd.com/en/products/adaptive-socs-and-fpgas/fpga.html

[2] https:/www.intel.com/content/www/us/en/products/details/fpga/arria.html

[3] https:/www.microchip.com/en-us/products/fpgas-and-plds/fpgas

Microchip (Microsemi):

https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria.html
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas

Why FPGA

ASIC - Application specific Integrated Circuit i.e. IC designed for a specific
application.

ASIC fabrication is a tapeout

A costly process which involves millions of Dollars i.e. huge cost investment.
\Verification process is a must.

Simulation & FPGA verification.

Simulation - Will not guarantee on timing.

FPGA - will provide both timing & functional validation i.e. at low
frequencies.

FPGA Design Flow

FPGA DESIGN FLOW

Specification &
Design Entry

)

el

Behavioral
Simulation

Constraints

1
Synthesis &
Implementation

D

Bitstream
Generation

FPGA Design Flow

Specification & Design Entry: Getting the requirements/specifications &
low/high level design.

Behavioral Simulation: \Writing the code (verilog, vhdl, system verilog &
BSV).

Synthesis: Converting the hdl to a netlist i.e. list of logic elements with
connections along with optimization.

Simulation: verification of the specification with simple test benches.

FPGA Design Flow

e Implementation: Process of converting the netlists to FPGA specific pattern
o Translate - collects and merge netlists into a single net list & verify the constraints.
o Map: Mapping the resources with net lists
o Place & Route: physical placement of the netlist to the FPGA physical resources
e Bitstream generation: converting the implementation design into a FPGA
understandable format.

A Step-by-Step Walkthrough in Nexys Video

module half add (
input a,b,
output sum,carry

) ;

assign sum = a * b;

assign carry = a & b;

endmodule

1. Design Entry - HDL Coding
(Verilog or VHDL or System Verilog)

a

b

A Step-by-Step Walkthrough in Nexys Video

2. Behavioral Simulation

A Step-by-Step Walkthrough in Nexys Video

3. Project Device
(Board Selection)

Project device: B Nexys Video (xc7a200tsbg484-1)

Target language: | Verilog v

Default library: xil_defaultlib

Top module name: half add

A Step-by-Step Walkthrough in Nexys Video

4. Constraints
(Xilinx Design Constraints)

Switches

-dict { } [get_ports { a }]; #sw[0O]
-dict { } [get_ports { }1; #sw[1]
LEDs
-dict { } [get_ports { }]; #led[O]
-dict { } [get_ports { }]; #led[1]

Inputs are mapped to switches & Outputs are mapped to LEDs.

A Step-by-Step Walkthrough in Nexys Video

5. Synthesis
(Translation)

carry _i

"y

o
L 4

RTL_AND

3 carry

7y
RTL_XOR

> sum

A Step-by-Step Walkthrough in Nexys Video

6. Place & Route
(Implementation)

a_IBUF inst carry OBUF inst i 1 carry OBUF inst
a D—{>" . 0 o =" [carry
IBUF 11 OBUF
b_IBUF_inst LUT2
| 0 : e ;
bi[% sum_OBUF inst i 1 | ri\in})OBUF_lnst
IBUF 0 © | [> sum
1 OBUF
LUT2

Each LUT will have 6 inputs in Nexys Video.

A Step-by-Step Walkthrough in Nexys Video

LUT Utilization

uUtilization Post-Synthesis | Post-Implementation
Graph | Table

Resource Utilization Available Utilization %
LUT 1 133800 0.01

1O - 285 1.40

Vivado steps

Create Project

Select Device/Board
Speed,Language

Add source Codes and constraints.
Add Vivado IPs.

Synthesis the design.

Implement the design.

Generate bit stream

Program hardware.

Shakti Core FPGA flow features

Project creation & build are tcl script and Makefile based.

Make is customizable for different boards.

ISA & peripherals are configurable in yaml files.

TCL scripts aids in instantiate the required IPs, creating the project, build the
project,program the mcs file.

Codes are written in bluespec.

Simulation support.

Peripheral instances and address mapping are configurable in bluespec files.
IP porting has few custom procedures.

Shakti FPGA flow Steps

Clone the repo.

Configure ISA, Core & debugger in yaml files.

Select the board.

Make instances of peripherals and the address mapping.
Get the dependency repos.

Compile the bluespec code to create the verilog files.
Instantiate the required Vivado IPs.

Create the project.

Build the project.

Generate mcs file.

Program the mcs.

Use the FPGA as Shakti.

Shakti Steps

Steps are simplified:

e (lone the code (https:/gitlab.com/shakti-iitm/shakti-projects/sos.git).
e Run the make command “make build BOARD=arty_a7_ganga"

Shakti IP porting

Shakti IP Porting

e Adding peripherals to Shakti core.

e |Pcanbe
o Available Shakti based Slow peripherals IPs.
o Available Vivado IPs.
o Adding new verilog code with Shakti core.

e Few predefined steps needs to be followed for smooth IP integration.

References:

Shakti Documentation: https:/shakti.org.in/documentation.html
Shakti Blogs: https:/blogshakti.org.in/

Shakti FPGA files: https:/gitlab.com/shaktiproject/sp2020
Shakti SDK: https:/gitlab.com/shaktiproject/software/shakti-sdk

Shakti on Arduino:
https:/blogshakti.org.in/how-to-print-hello-world-on-shakti-using-arduino-ide/

Linux on Shakti: https:/gitlab.com/shaktiproject/software/linux-on-shakti

Platform 10: https:/registry.platformio.org/platforms/platformio/shakti

Shakti cores: https:/gitlab.com/shaktiproject/cores

Shakti peripherals: https:/gitlab.com/shaktiproject/uncore/devices

29

https://shakti.org.in/documentation.html
https://blogshakti.org.in/
https://gitlab.com/shaktiproject/sp2020
https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/software/linux-on-shakti
https://registry.platformio.org/platforms/platformio/shakti
https://gitlab.com/shaktiproject/cores

Queries

Thank you!

Website: shakti.org.in

GitLab: gitlab.com/shaktiproject

http://shakti.org.in
http://gitlab.com/shaktiproject

