
SHAKTI FPGA Design Flow
SHAKTI Group | CSE Dept | PS-CDISHA - RISE Lab | IIT Madras

Shakti Core

SHAKTI Ecosystem

3
 SHAKTI Design Portfolio

E Class vs C Class vs I Class
❖ Operating frequency: Upto 400 MHz

❖ Positioned against ARM’s Cortex Mx class cores

❖ Target: IoT devices, Edge Devices, Robotic Control, Smart cards

❖ Operating frequency: > 1+ GHz

❖ Positioned against ARM’s Cortex A35/A55

❖ Target: Reliable Computing, Secure Computing, IoT & Edge Computing
hubs, Auto/Aerospace/Industrial Controls

❖ Operating frequency: 1-2 GHz

❖ Positioned against ARM’s Cortex A76 (Work in Progress)

❖ Target: High Performance Compute, Mobile, Storage and Networking
segments 4

E-Class

C-Class

I-Class

SoC - System On Chip

SoC
● Integration of a complete

system by replacing a
product/application which needs
multiple chips to a single IC.

● Very Large transistor counts on
a single IC.

● Mixed Technology on a same
chip (digital protocols, memory,
analog, etc.).

Why SoC
● Complex applications.
● High performance.
● Battery Life.
● Short market window.
● Cost sensitivity.
● Modern technologies.

SoC Applications
● Telecommunications (Ethernet switch, bridge, router, ATM switch, etc.)
● Portable Consumer Products (MP3 players, Display systems, Mobiles, etc.)
● Multimedia (camera, games, Video).
● Embedded Control (Automotive, printers, smart cards, etc).

FPGA - Field Programmable Gate Arrays

What is an FPGA?

● Field Programmable Gate Array (FPGA)

● Reconfigurable Hardware – FPGAs enable dynamic hardware customization.

● HDL Programmability – Designed using HDLs to model chip behavior.

● Post-Deployment Adaptability – Modify functionality even after deployment.

FPGA Technology Giants

AMD (Xilinx)[1] Microchip (Microsemi)[3]Intel (Altera)[2]

[1] https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga.html

[2] https://www.intel.com/content/www/us/en/products/details/fpga/arria.html

[3] https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas

https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria.html
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas

Why FPGA

● ASIC - Application specific Integrated Circuit i.e. IC designed for a specific
application.

● ASIC fabrication is a tapeout
● A costly process which involves millions of Dollars i.e. huge cost investment.
● Verification process is a must.
● Simulation & FPGA verification.
● Simulation - Will not guarantee on timing.
● FPGA - will provide both timing & functional validation i.e. at low

frequencies.

FPGA Design Flow

FPGA Design Flow

● Specification & Design Entry: Getting the requirements/specifications &
low/high level design.

● Behavioral Simulation: Writing the code (verilog, vhdl, system verilog &
BSV).

● Synthesis: Converting the hdl to a netlist i.e. list of logic elements with
connections along with optimization.

● Simulation: verification of the specification with simple test benches.

FPGA Design Flow
● Implementation: Process of converting the netlists to FPGA specific pattern

○ Translate - collects and merge netlists into a single net list & verify the constraints.
○ Map: Mapping the resources with net lists
○ Place & Route: physical placement of the netlist to the FPGA physical resources

● Bitstream generation: converting the implementation design into a FPGA
understandable format.

A Step-by-Step Walkthrough in Nexys Video

1. Design Entry - HDL Coding
 (Verilog or VHDL or System Verilog)

module half_add (

 input a,b,

 output sum,carry

);

assign sum = a ^ b;

assign carry = a & b;

endmodule

A Step-by-Step Walkthrough in Nexys Video
2. Behavioral Simulation

A Step-by-Step Walkthrough in Nexys Video
3. Project Device

 (Board Selection)

A Step-by-Step Walkthrough in Nexys Video
4. Constraints

(Xilinx Design Constraints)

Switches

set_property -dict { PACKAGE_PIN E22 IOSTANDARD LVCMOS12 } [get_ports { a }]; #sw[0]

set_property -dict { PACKAGE_PIN F21 IOSTANDARD LVCMOS12 } [get_ports { b }]; #sw[1]

LEDs

set_property -dict { PACKAGE_PIN T14 IOSTANDARD LVCMOS25 } [get_ports { sum }]; #led[0]

set_property -dict { PACKAGE_PIN T15 IOSTANDARD LVCMOS25 } [get_ports { carry }]; #led[1]

Inputs are mapped to switches & Outputs are mapped to LEDs.

A Step-by-Step Walkthrough in Nexys Video
5. Synthesis

 (Translation)

A Step-by-Step Walkthrough in Nexys Video
6. Place & Route

(Implementation)

 Each LUT will have 6 inputs in Nexys Video.

A Step-by-Step Walkthrough in Nexys Video
LUT Utilization

Vivado steps
● Create Project
● Select Device/Board
● Speed,Language
● Add source Codes and constraints.
● Add Vivado IPs.
● Synthesis the design.
● Implement the design.
● Generate bit stream
● Program hardware.

Shakti Core FPGA flow features
● Project creation & build are tcl script and Makefile based.
● Make is customizable for different boards.
● ISA & peripherals are configurable in yaml files.
● TCL scripts aids in instantiate the required IPs, creating the project, build the

project,program the mcs file.
● Codes are written in bluespec.
● Simulation support.
● Peripheral instances and address mapping are configurable in bluespec files.
● IP porting has few custom procedures.

Shakti FPGA flow Steps
● Clone the repo.
● Configure ISA, Core & debugger in yaml files.
● Select the board.
● Make instances of peripherals and the address mapping.
● Get the dependency repos.
● Compile the bluespec code to create the verilog files.
● Instantiate the required Vivado IPs.
● Create the project.
● Build the project.
● Generate mcs file.
● Program the mcs.
● Use the FPGA as Shakti.

Shakti Steps
Steps are simplified:

● Clone the code (https://gitlab.com/shakti-iitm/shakti-projects/sos.git).
● Run the make command “make build BOARD=arty_a7_ganga”.

Shakti IP porting

Shakti IP Porting
● Adding peripherals to Shakti core.
● IP can be

○ Available Shakti based Slow peripherals IPs.
○ Available Vivado IPs.
○ Adding new verilog code with Shakti core.

● Few predefined steps needs to be followed for smooth IP integration.

References:
Shakti Documentation: https://shakti.org.in/documentation.html

Shakti Blogs: https://blogshakti.org.in/

Shakti FPGA files: https://gitlab.com/shaktiproject/sp2020

Shakti SDK: https://gitlab.com/shaktiproject/software/shakti-sdk

Shakti on Arduino:
https://blogshakti.org.in/how-to-print-hello-world-on-shakti-using-arduino-ide/

Linux on Shakti: https://gitlab.com/shaktiproject/software/linux-on-shakti

Platform IO: https://registry.platformio.org/platforms/platformio/shakti

Shakti cores: https://gitlab.com/shaktiproject/cores

Shakti peripherals: https://gitlab.com/shaktiproject/uncore/devices

29

https://shakti.org.in/documentation.html
https://blogshakti.org.in/
https://gitlab.com/shaktiproject/sp2020
https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/software/linux-on-shakti
https://registry.platformio.org/platforms/platformio/shakti
https://gitlab.com/shaktiproject/cores

Queries

Thank you!
Website: shakti.org.in

GitLab: gitlab.com/shaktiproject

http://shakti.org.in
http://gitlab.com/shaktiproject

