
Shakti I Class: Introduction

Nitya Ranganathan

Design Team: Rahul Bodduna, Shalendar Kumar, Arjun Menon,
Sujay Pandit, Vipul Vaidya, Nitya Ranganathan

2

What is the I-Class processor?

● I-Class is a superscalar out-of-order (OoO) processor with
potential applications in general purpose computing and
high-end embedded markets

● A gentle introduction to version 1.0 of the core, not
covering SoC
– High-level design of version 1.0 with extra details on few blocks
– Interesting design trade-offs
– Current and future work

● Note: This is work in progress
– Implementation in BSV, Verification and Performance Analysis

ongoing

3

Designing an Out-of-Order processor

● Multi-wide out-of-order design is difficult to implement and verify even
in large corporations

● We are a small team!
● How to choose from 1000’s of proposed features for OoO

performance/power/area?
● Employ a combination of techniques

– Lessons from academia and industry

– “Intuition” about OoO design tradeoffs

– Feature refinement based on performance modelling, bottleneck analysis etc.

– Simple first-cut OoO design, enhancements in next version

– Cut development time with Bluespec; instantiate some components from libraries

● Balancing performance and power is critical
– High performance designs typically come at the cost of power or area

– A new performance feature is beneficial only if it significantly improves execution
time without severely impacting power/area

4

Key Performance Enablers for OoO processors

● Instruction supply
– Accurate branch predictor
– Low I-Cache miss rate
– Early wrong path detection
– Fast recovery from misspeculations

● Data supply
– Low load-to-use latency
– Low D-cache miss rate and miss penalty
– Good store commit bandwidth

● Pipelining and data path
– Optimal pipelining for high frequency while balancing branch misprediction penalty
– Split issue queues to implement larger instruction windows
– Operand bypass for back-to-back execution of dependent instructions
– Pipelined functional units with low latencies

● Summary: Keep the processor busy, reduce wasteful execution and spend very little
time waiting for data from memory!

5

Basic I-Class Pipeline (version 1.0)

● 4-wide out-of-order core: fetch/dispatch/issue/commit 4 insts/cycle
● 12-stage pipeline for simple integer operations
● RV64IMAFDC (int, mul/div, atomic, single/double precision floating point, compressed)

● Key features: Multiple branch prediction, register renaming with checkpointing,
separate issue windows for Int and FP, reorder buffer, operand bypass, pipelined
functional units (except div/sqrt), memory dependence predictor, non-blocking cache

6

I-Class Pipeline (detailed)

Note: Memory accesses are in green, Flushes and Redirects are in red

7

Latencies: Pipeline stages, functional units

Branch prediction, I-Cache Read, 4-wide Instruction Fetch 3 cycles

Instruction Decode 1 cycle

Renaming and Checkpointing 1 cycle

Dispatch (Allocate to IWs, ROB, LSQ) 1 cycle

Issue (Wakeup/Select) 2 cycles

Register Read (From Physical Register File) 1 cycle

Execute (ALU, AGU, BU, Mul, Div, FPU) 1 to 32 cycles for arith; Minimum 4
cycles for loads

Single cycle int add/sub, shifts, logical
Pipelined int multiply, FP add/sub/mul,
fmac
Non-pipelined int divide, FP divide/sqrt

Writeback (To PRF) 1 cycle

Commit 1 cycle

8

Instruction Fetch and Branch Prediction

● Fetch any combination of four 32-bit or 16-bit instructions; stop on predicted taken
branch or end of cache line

● Compressed instuction support lowers I-Cache footprint but complicates branch
prediction and instruction extraction from fetch packet!

● BPU: Gshare-style branch direction predictor, branch type predictor, BTB and RAS
● Several decoupling buffers between blocks

9

Decode and Register Renaming

● Renaming removes Write-After-Read
(WAR) and Write-After-Write (WAW)
dependences
– Only true data dependences remain

● Rename Architectural Register File (ARF)
identifiers to Physical Register File (PRF)
identifiers

● Checkpoint register map tables, free lists
regularly
– Quickly recover processor state from

mispredictions

● Decode: Simple decode for RISC-V
– Few fixed formats, only two instruction widths

● Detect definite mispredictions based on decoded information like opcode, branch type
– Flush Fetch, Decode stages; Send early redirect to BPU

Example:
ADDW R6, R6, R4 => ADDW P24, P15, P14
MUL R6, R6, R10 => MUL P35, P24, P19

10

Dispatch and Issue
● Dispatch checks for structural hazards in issue windows, re-order buffer and load/store

queues
– Dispatch to Issue windows; Allocate ROB, LSQ entries

– Dispatch detects csr instructions, fences and atomics

● Issue consists of Wakeup (set sources ready) and Select (pick for execute)
– Wakeup instructions from issue windows based on result tags broadcast from

functional units

– Out-of-order wakeup when source registers are available from PRF/bypass network

– Select up to 4 instructions every cycle based on certain constraints: functional unit
and register write port availability

– Selected instructions are immediately removed from the issue windows

– Wakeup/Select one of the most timing critical loops

● Re-order Buffer (ROB) stores instruction metadata for all instructions in flight
– 80-entry ROB => maximum 80 instructions in flight

– Split Instruction Window/ROB design to reduce complexity of tag broadcast

– Simple ROB (only instruction metadata) is required to preserve sequential semantics

11

Load/Store Queues and Memory Disambiguation

● Unlike arithmetic instructions, Loads and Stores cannot execute as soon as their operands are
available! An example of load after store ordering issue:

● Our solution for memory disambiguation:
– Use load queue (LQ) and store queue (SQ) and check for address matches by CAM’ing

– Allocate LSQ entries at dispatch but send inst info to LSQ only after address generation

– Loads can either get their value from earlier stores in the SQ or from the D-Cache

– Only loads marked “speculative” by dependence predictor can bypass older stores

– Stores forward data to waiting loads in the LQ

– Detect misspeculation and trigger pipeline flush if load received wrong data

– Stores always issue to memory in-order at commit

Memory
operations

Store addr resolves
earlier and matches:
Forward to Load

Store addr resolves
earlier and different:
Issue Load

Non-speculative
load’s addr resolves
earlier: Wait for
store

Speculative load’s
addr resolves
earlier: Issue Load.
Flush if mismatch
detected by store

sw p15, 48[p3] 0x10001024 0x10001664 Addr not ready Addr not ready

lw p17, 12[p4] 0x10001024 0x10001024 0x10001024 0x10001024

12

LSU, L1 D-Cache and MMU

● LSU is the only core block that
interacts with L1 D-Cache

● 32KB VIPT writeback data cache
with 2-cycle access time

● Non-blocking cache supporting
multiple outstanding misses with Miss
Status Handling Registers (MSHRs)

● Accepts read/write requests from
Load-Store Unit

● Responds with requested data or
NACK (on MSHR full)

● Full support for fences and all atomic
instructions

● Fully associative TLB for address
translation

● Hardware page table walk

13

Register File, Writeback, Commit

Physical Register File (PRF)
● Single large physical register file includes both integer and FP registers, no separate arch file
● PRFs hold both speculative and non-speculative values
● Instructions read operands from PRF after selection
● Currently, PRF has 9 read ports and 4 write ports!
● Splitting the PRF reduces complexity but lowers performance on int-heavy or fp-heavy

programs

Writeback/Mem
● Write to PRF (out-of-order) as soon as instructions complete execution
● Send destination register tags for wakeup in IWs
● Write load and store addresses to LSQs

On Commit
● Stores write to caches only at commit
● No regular writes to PRF
● Exception detection and recovery (sequential semantics)
● Updates to free list, branch predictor, checkpoint state, ROB, LSQ

14

Collaborate/Work with us!

We are currently working on:

• Implementing atomics

• Memory dependence prediction

• Instruction Window/Scheduler optimizations

• Implementation of some functional units

• Performance analysis/projections

• Optimizations to meet first-cut target frequency: 1 Ghz on 22nm

Starting soon:

• Better branch prediction

• Op-fusion, Loop buffer in decode

• Low complexity issue windows, speculative wakeup, split PRF

• Prefetchers – Instruction and Data

• Unified L2 cache with coherence

• Multithreading

Backup Slides

16

I-Class: Major Blocks and Structures

● Branch Prediction (Gshare predictor, BTB, RAS, BLB)
● Instruction TLB and I-Cache
● Instruction Fetch
● Decode and early pipeline re-direct

● Register Renaming and Checkpointing (Map tables, Free Lists, Backups)

● Dispatch and Allocate
● Instruction Windows (I.IW, F.IW)

● Reorder Buffer (ROB)

● Functional Units (Integer ALU, Int Multiply, Int Divide and Floating Point units)

● Load/Store Queues (LQ, SQ), Dependence Predictor and Memory
Disambiguation

● Physical Register File (Register Read and Writeback)

● Data TLB and L1 D-Cache

● Unified L2 Cache
● Instruction Commit

17

I-Class: Functional Units (version 1.0)

● Integer 1-cycle ops (ALU/AGU/BU)
– Simple arithmetic, add, sub, shifts, logical, address generation,

branch unit etc.

● Integer multiply - pipelined

● Integer divide – non-pipelined

● Floating point conversion
– SP/DP conversion
– Int/Float conversion

● FP Add/Sub, FP Mul, FMAC - pipelined

● FP Div/Sqrt - non-pipelined

