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Branch Prediction




Motivation of the work

» Computer Architecture has evolved over the decade
with performance improvisation being ifs sole motivation
and objective.

» |0 this work, we start with the security evaluation of one
of the most important architectural component- the
branch predictors.

» |fis also a difficult task to guess which particular design
has been implemented in hardware- this requires basic
reverse engineering.

» There exists no security guidelines to sensitive
cryptographic applications executing in multi-tenant or
cloud environment. There still exists legacy codes like
RELIC and texts books which suggest such
implementation to be efficient, though being highly
vulnerable to micro-architectural attacks.
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Dynamic 2-bit predictor State Machine

@ The predictor must miss twice before the prediction
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Figure: Variation of branch-misses from performance counters with increase in branch
miss from 2-bit predictor algorithm

» Direct correlation observed for the branch misses from HPCs and from the
simulated 2-bit dynamic predictor over a sample of exponent bitstream.

» This confirms assumption of 2-bit dynamic predictor being an approximation to
the underlying system branch predictor.
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Secret Dependent Branching

Let n-bit secret scalar in ECC be denoted as
(ko,k1,--+- ,ki,--- ,kn—1). Trace of taken or not-taken branches

as conditioned on scalar bits and expressed as (bo, b1, -+ ,bn_1).

» If a particular key bit k; is 1 then the conditional addition
statement in the double and add algorithm gets executed. Thus,
the condition is checked first, and if the particular key bit is set
then its immediate next statement ie, addition gets performed.
Since this is a normal flow of execution the branch is considered

as not-taken ie, b; = 0 in this case.

» While when k; = 0, the addition operation is skipped and the
execution continues with the next squaring statement. Thus, in

this case branch is taken ie, b; = 1.




Effect of Compiler Optimization on
branching

» We validate our understanding for conditional branching and
observe the effect of optimization options in gcc:
Bl .LC3: .string hello
LC4 : .string hi

| with Optimzation | 1 | = | o3 |
L5:
l‘nI I —36 rbp ) Fiea L N ia
o bl —32(Frbp . Frax), THeax c.mph 349 P % movl $_.L = | nc-.'.l 104,
349 - jme L3 T 11 pu
plagteong = movi LCS : SSmEl Bt L
m Foten: call puts st
= -
r:nlll ~‘ll.C.‘3. ze pap =kl e LS J L3
. B L3; A R meovl 3.LC di
jmp L4 mov! $_LC3. = |
1 3‘. movli 3.LC4 i 1 puts
movl §_LCi, Sed CE et
all puts

Figure: Assembly generated using various optimization options in gcc




guess
]
Enown key bits di = 0
-rf,"' |:'1I:I| 1
do |dy - i1 Branch decision for guessed it
£y L3 - (R -‘-"“"_ 1
. d; =1
Stepl: Trace of taken or not taken branches (t;'s) 5
for a sample input m wht
Step 2: if T(ty,ty,---,8) =t

then add m to M,
else add m to A,

if T(ty,ta,--- . t;) =27,
then add m to Ms
else add m to M,

EB M, = {m|m does not cause a miss during MM of (i + 1)*"
squaring if d; = 1}

E M, = {m|m causes a misprediction during MM of (i + 1)/
squaring if d;, = 1}

M3 = {m|m does not cause a miss during MM of (i + 1)t
squaring if d; = 0}

M, = {m|m causes a misprediction during MM of (i + 1)*"

squaring if d; = 0}

We ensure that there must be no common ciphertexts in sets
(M1, M3) and (Ms, M4) and the sets should be disjoint.




The probable next bit is decided by the following:
> If(avg(Mar,) > avg(May,)) and (avg(Myy,) < avg(Mag,)), then
the next bit (nb;) =1

» Otherwise, if (avg(Myy,) > avg(Myy,)) and
(avg(Mar,) < avg(May,)) then, next bit (nb;) =

Algorithm 4: Adversary Attack Algorithm

Input: (dp. dy,--- .di_1).M
Output: Probable next bit nb;
begin
Offline Phase;
for ¥m € M do
Generate taken/ not-taken trace for input mas £, 1.t 2, "+ s tm i s
Assume d; = 0 and 1, generate tﬂm,i+1' tr];,“-_l respectively;
Pm,i+1 = T(rm,]_e Im 25" " .-rm,f] ;
if priv1 = r};”_l then
Add m to My ;

end
else
Add m to M> ;
end
if Prm,is1 =ty ;51 then
Add mto M3 ;
end
else
Add m to My ;
end
end
Remove Duplicate Ciphertexts in the sets My, Ma and Mo, Ma:
Online Phase;
Observe distribution of branch misses from performance counters as Mpg . My, Mgy Magy

if ( avg(MMi] > avg MMI }) and (avg(MM4] < avg(MMB ) then
end =i
if (avg( My, ] > avg(Mpy ) and (avg(Mpg, ) < avg( Mgy ) then

nb; =

end
return nb; ;

en




The probable next bit is decided by the following:
> lf(avg(Ma,) > avg(May,)) and (avg(Ma,) < avg(Mag,)), then
the next bit (nb;) = 1

» Otherwise, if (avg(Mr,) > avg(My,)) and
(avg(Ma,) < avg(May,)) then, next bit (nb;) = 0
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Figure: Branch misses from HPCs on square and multiply correctly identifies secret bit
d; = 1, ciphertext set partitioned by simulated misses of two-level adaptive predictor

N

Observe distribution of branch misses from performance counters as My, Mpgy s Mpgg s Mgy

if (avg(,;f\ffm;i] > avg(Mpy, ) and (avg(Mpy,) < avg(Mp,)) then
no; = ;

end

if (QVE[EMM ) > avg(Mpy)) and (avg( Mg, ) < avg( My, ) then
noy = »

end

return nb; ;

en







Reverse Engineering of Branch

Prediction

We perform a reverse engineering of the branch predictor
hardware and found that the behavior has a significantly
high correlation to the deterministic 3-bit predictor

characteristics.

Branch prediction hardware design is proprietary of the processor

manufacturer.

» The perf class is instantiated with
particular hardware event.

» We incorporate start and stop calls
before and after the target
conditional if-else structure.

» This returns event counts at
regular interval and measurements
are synchronous to the execution
of the conditional block.

BrEtlc -Jﬁ?ll'lg
parf_svant_open(struct perf_ovest_attr shw_eveat, pid_t pid,
ist cpu, ot growp_fd, unaigned long flaged
1
1o ret;

ot = syscalld__NB_peri_ewent_opem, hv_ovent. pid. cpu,
groap_fd, flage);
return rat;

1

woid start()

int rc = ioctl{fd_, PERF_EVENT_IDC_RESET, 07;
BASETE (TS == 0}

re = ioctl{fd_, PEAF_ENENT_IDC_EWAELE, 03 ;
BASETE (P == Q)]

alze_t aropld
1

int rc = 1octl{fd_, PERF_EVENT_IDC_DISABLE, 0% ;
AISETEITS == 0]

size_% comnk;

int got = readifd. . kcoumt, sizeoflcountl);
aszart (got == sizeof(counmt)};
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Deduce & Remove Attack on Blinded Scalar
Multiplication with Asynchronous perf ioctl Calls




Overview

» HPCs are potential side channel source for
implementations using conditional branching where the
hardware is typically shared between multiple users.

» However, existing research considers blinding techniques,
like scalar blinding, scalar splitting as a mechanism of

thwarting such attacks.

» We reverse engineer the undisclosed model of Intel’'s
Broadwell and Sandybridge branch predictor and further
utilize the unexplored perf ioctl calls in sampling mode to
granularly monitor the branch prediction events
asynchronously when a victim cipher is executing.




Objective

» We target the harder problem of attacking the DPA secure
implementations such as scalar splitting and scalar blinding
using the perf ioctl system calls.

» The samples obtained are inherently noisy because of its
asynchronous nature.

» Traces obtained lack proper synchronization and
measurements at regular time-step.

» The target algorithm being randomized in nature adds to
the difficulty of attacking with such coarse measurements.




Principle

Thus we follow by a principle of,

» Acquire: obtain branch misprediction traces over the scalar
multiplication.

» Deduce: every randomized trace should reveal partial key
bits.

» Remove: if a randomized trace does not leak any

information regarding the trace, then the attacker should be
able to isolate and remove the trace.




Scenarios
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Understanding Branch Mispredictions
Existing DPA countermeasures on ECC

Scalar Randomization[1]

If K is the secret scalar and P € E the base point, instead of
computing K times P, randomize the scalar K as K' = K + 7 x #F
where r is a random integer and #F is the order of the curve.

Scalar Splitting

In [2], to randomize the scalar such that instead of computing K P, the
scalar is split in two parts K = (K — r) + r with a random r, and
multiplication is computed separately, KP = (K —r)P + rP.

Point Blinding

This computes K (P + R) instead of K P, where K R can be stored in
the system beforehand, which when subtracted K (P + R) — K R gives
back K P.







BTB structure and Collision

branch target address

branch instruct on
with matched tags

address
- tag 1 target addressl —m
o tag 2 target address 2 -
- tag 3 tatget address 3 —
first match
—
o tag 11 target addressn -
covter




Threat Model

Victim

signal

s

h:iIIl[1|.rir1Ein’||_|';:|i-u:l]Hfi;II
a

victim_func() (&)

sleep() (@)

' n CJELE.‘-S

spy_lfu r‘n-::l[]'_J @
|—repeat—




Always executes taken
branch which jumps to
target address TA_spy

Spy

Could execute a taken

or not-taken branch Victim

Measures the access
time of the target

Measure
address TA_spy




Secure Predictors




1.

Contributions

The primary contribution of this work is a secure design of branch
predictor: A-confidence predictor which invalidates the direct
proportionality of branch mispredictions from known predictor
stfructures.

A hashed indexing scheme which is essential to prevent branch
collision based attacks on the shared table structures such as BTB and
PHT.

Performance comparison of the new predictor to state-of-art
predictors like Gshare and more recent TAGE-based predictors using
traces from SPEC-2006, server and multimedia benchmarks in terms of
MisPredictions per Kilo Instructions (MPKI) and misprediction penalty, to
demonstrate that the design do not compromise on performance.

Lastly, test for security on cryptographic implementations and the
design has lesser information leakage than predictors in literature.



Why Is It Important fo design secure
branch predictors ¢

“Does making cryptographic implementations free from condifional
branching totally do away with the threat of micro-architectural
attacks caused due to the branch predictorse”




Insecurity of Commercial Intel Systems
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(a) 2-bit dynamic predictor (HP06). (b) Alternative structure of 2-bit dynamic predictor (HP06).

"E_ 580 T T T T T T
E 560 i
oy
E 540 - -
=
9 520 -
=
2  so0 - B
E 480
5 i i
E aeo .
g 440 1 1 1 1 1 1
% 440 450 480 500 520 540 560 580

Simulated branch misses from 2-bit dynamic predictor




InSecurity for TAGE based predictor structures
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How are TAGE predictors vulnerable

QA Initial branches, where there are no matched tags in any of the component
structures: This is the phase when the execution just starts and the index
decided by the program counter xored with none of the previous history,
do not match with any stored tags in the computed indices. In this part of
the execution, the predictions are made using the base predictor.

d When there are some tags which match the existing history based tags and
some does not. In this case, the 3-bit predictor of the first component table
and the base predictor are most likely to provide the prediction.

d Third case arises, for the final bits of execution which shows tag, index
match in multiple component tables of TAGE. But the final prediction is such
that in each of these component tables the 3-bit predictors provide the
final prediction.




How are TAGE predictors vulnerable

Percentages of matches with the individual components
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Aim of A Predictor: Performance + Security

« Performance for Benchmark Programs

« Security for Sensitive Applications




Adding Lambda confidence to generic
predictor model
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Effect of Lambda on Gshare
predictors
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200 T T T T T T T T
250 ] g
200 | 4
150 | 4
100 |ambda - 0 7
|ambda - 5
50 | |lambda - 10 -
lambda = 15
ur |lambda - 25 7
lambda - 30
50 , , , , , , ! ,
420 440 460 480 500 520 540 ) 580 &00

Simulated branch misses

Branch address

History Register

- taken 7

440 . .

larmbda = 0
lambda = 1

lambda = & +
lambda = 10 ——
lambda = 15
lambda = 20

lambda = 25 +

lambda - ?EI —_—

Oteered branch misses ower Gshansambd:
2
)
1

1
4400 480 420 =00

1 1
520 a0

BED

Simulaied branch misses from Gshare peedicior

Gitable

prediction bais

Branch misses plotted for various values of A across misses from Gshare structure.



Securing BTB from collision based attacks
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Condiional Mispredictions per Kilo Instructions (MPKI
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Performance of A + ISL-TAGE

Comparison
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Inconclusive DOM results after
iInfroducing A
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