
Predicting the Branch Predictors: 

inception to secure predictors

Sarani Bhattacharya

COSIC, KU Leuven



Branch Prediction



Motivation of the work

 Computer Architecture has evolved over the decade 
with performance improvisation being its sole motivation 
and objective. 

 In this work, we start with the security evaluation of one 
of the most important architectural component- the 
branch predictors. 

 It is also a difficult task to guess which particular design 
has been implemented in hardware- this requires basic 
reverse engineering. 

 There exists no security guidelines to sensitive 
cryptographic applications executing in multi-tenant or 
cloud environment. There still exists legacy codes like 
RELIC and texts books which suggest such 
implementation to be efficient, though being highly 
vulnerable to micro-architectural attacks.



Observation 1



Abrupt increase in branch miss observed by unprivileged 

user due to exponentiations from privileged process

2



Abrupt increase in branch miss observed by unprivileged 

user due to exponentiations from privileged process

2



Abrupt increase in branch miss observed by unprivileged 

user due to exponentiations from privileged process



Variation of branch-misses from HPCs with increase in branch 

miss from 2-bit predictor algorithm on various platforms



Secret Dependent Branching



Effect of Compiler Optimization on 

branching









Observation 2



Reverse Engineering of Branch 

Prediction





Deduce & Remove Attack on Blinded Scalar 

Multiplication with Asynchronous perf ioctl Calls



Overview



Objective



Principle



Scenarios



Understanding Branch Mispredictions

Existing DPA countermeasures on ECC



Observation 3



BTB structure and Collision



Threat Model



Always executes taken 

branch which jumps to 

target address TA_spySpy

Could execute a taken 

or not-taken branch Victim

Measure

Measures the access 

time of the target 

address TA_spy



Secure Predictors

Fortifying Branch Predictors to thwart 

Micro-architectural Attacks



Contributions

1. The primary contribution of this work is a secure design of branch

predictor: λ-confidence predictor which invalidates the direct

proportionality of branch mispredictions from known predictor

structures.

2. A hashed indexing scheme which is essential to prevent branch

collision based attacks on the shared table structures such as BTB and

PHT.

3. Performance comparison of the new predictor to state-of-art

predictors like Gshare and more recent TAGE-based predictors using

traces from SPEC-2006, server and multimedia benchmarks in terms of

MisPredictions per Kilo Instructions (MPKI) and misprediction penalty, to

demonstrate that the design do not compromise on performance.

4. Lastly, test for security on cryptographic implementations and the

design has lesser information leakage than predictors in literature.



Why is it important to design secure 

branch predictors ?

“Does making cryptographic implementations free from conditional

branching totally do away with the threat of micro-architectural

attacks caused due to the branch predictors?”



Insecurity of Commercial Intel Systems



InSecurity for TAGE based predictor structures



How are TAGE predictors vulnerable

 Initial branches, where there are no matched tags in any of the component

structures: This is the phase when the execution just starts and the index

decided by the program counter xored with none of the previous history,

do not match with any stored tags in the computed indices. In this part of

the execution, the predictions are made using the base predictor.

 When there are some tags which match the existing history based tags and

some does not. In this case, the 3-bit predictor of the first component table

and the base predictor are most likely to provide the prediction.

 Third case arises, for the final bits of execution which shows tag, index

match in multiple component tables of TAGE. But the final prediction is such

that in each of these component tables the 3-bit predictors provide the

final prediction.



How are TAGE predictors vulnerable



Aim of λ Predictor: Performance + Security

• Performance for Benchmark Programs

• Security for Sensitive Applications



Adding Lambda confidence to generic 

predictor model



Effect of Lambda on Gshare

predictors



Securing BTB from collision based attacks



Results on values of Lambda

MPKI
Misprediction Penalty



Performance of λ + ISL-TAGE



Inconclusive DOM results after 
introducing λ

Branch Prediction Attack on RSA-OAEP Randomized Padding Scheme



THANK YOU FOR YOUR 

ATTENTION!


