Predicting the Branch Predictors:
Inception to secure predictors

Sarani Bhattacharyao
COSIC, KU Leuven

Branch Prediction

Motivation of the work

» Computer Architecture has evolved over the decade
with performance improvisation being ifs sole motivation
and objective.

» |0 this work, we start with the security evaluation of one
of the most important architectural component- the
branch predictors.

» |fis also a difficult task to guess which particular design
has been implemented in hardware- this requires basic
reverse engineering.

» There exists no security guidelines to sensitive
cryptographic applications executing in multi-tenant or
cloud environment. There still exists legacy codes like
RELIC and texts books which suggest such
implementation to be efficient, though being highly
vulnerable to micro-architectural attacks.

S50
500 |
A5G0
400 -

aso -

Brand Misses

feLeli]
260 -
200

Tima{ms)

Abrupt increase in branch miss observed by unprivileged
user due to exponentiations from privileged process

S50
SO0
A5G0
400

5o

Brand Misses

feLeli]
250
200

Dynamic 2-bit predictor State Machine

@ The predictor must miss twice before the prediction

changes.
i @ Conditional branching in regular recurring fashion
B goes undetected.
10 I m_mlm“m”m
Tima{ms}) framch iy Regiser 00001 f.-;:m;;...\ "
Abrupt increase in branch miss observed by unprivileged el [| o A
user due to exponentiations from privileged process iy \]* R

Dynamic 2-bit predictor State Machine

@ The predictor must miss twice before the prediction

S50
500 |
A5G0
400 -

aso -

Brand Misses

feLeli]
260 -
200

Abrupt incre
user due to

changes.

@ Conditional branching in regular recurring fashion
goes undetected.

1260 | | : | T T T T
4350 |

[]
4340 W [4 e
4330 | M _

4320 M+M 1]
4310 | ,Z“w |

4300 | -

Observed branch misses from Perf

4290 1 L 1 L 1 L L L
470 480 490 500 510 520 530 540 550 560

Predicted branch misses from 2-bit dynamic predictor

Figure: Variation of branch-misses from performance counters with increase in branch
miss from 2-bit predictor algorithm

» Direct correlation observed for the branch misses from HPCs and from the
simulated 2-bit dynamic predictor over a sample of exponent bitstream.

» This confirms assumption of 2-bit dynamic predictor being an approximation to
the underlying system branch predictor.

=10 -

O peed branch mimes from Peid

sy s brarch mimsa from Pad

' 470 A8 490 500 510 S0 530 S0 520 = n LE0 A0 SO0 540 520 =20 S 550 S0
Frdided branch missss rom 2408 dyramic pedicion Prdickd branch missas tnom 2-bE dynamic predicior

(a) Branch misses observed on Intel (b) Branch misses observed on Intel
Core2 Duo-E7400 i3-M350

4180

410

4160

4150

£1£0

£130

Ot d brandh il Fom Peif
REEEREGR S

el ar v Brarect i s from Pad

4120

£110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ers 480 490 500 Ei0 E30 E30 E4D 520 =20 £m B0 L E00 B0 520 530 S403 E50 =]
Frdidaed branch misses hom 2-08 dyramic prdicion Predicied branch mism:s from 2-b oy namic predicior

(c) Branch misses observed on Intel {(d) Branch misses observed on AMD
i5-3470 FX-8350

Variation of branch-misses from HPCs with increase in branch
miss from 2-bit predictor algorithm on various platforms

Secret Dependent Branching

Let n-bit secret scalar in ECC be denoted as
(ko,k1,--+- ,ki,--- ,kn—1). Trace of taken or not-taken branches

as conditioned on scalar bits and expressed as (bo, b1, -+ ,bn_1).

» If a particular key bit k; is 1 then the conditional addition
statement in the double and add algorithm gets executed. Thus,
the condition is checked first, and if the particular key bit is set
then its immediate next statement ie, addition gets performed.
Since this is a normal flow of execution the branch is considered

as not-taken ie, b; = 0 in this case.

» While when k; = 0, the addition operation is skipped and the
execution continues with the next squaring statement. Thus, in

this case branch is taken ie, b; = 1.

Effect of Compiler Optimization on
branching

» We validate our understanding for conditional branching and
observe the effect of optimization options in gcc:
Bl .LC3: .string hello
LC4 : .string hi

| with Optimzation | 1 | = | o3 |
L5:
l‘nI I —36 rbp) Fiea L N ia
o bl —32(Frbp . Frax), THeax c.mph 349 P % movl $_.L = | nc-.'.l 104,
349 - jme L3 T 11 pu
plagteong = movi LCS : SSmEl Bt L
m Foten: call puts st
= -
r:nlll ~‘ll.C.‘3. ze pap =kl e LS J L3
. B L3; A R meovl 3.LC di
jmp L4 mov! $_LC3. = |
1 3‘. movli 3.LC4 i 1 puts
movl §_LCi, Sed CE et
all puts

Figure: Assembly generated using various optimization options in gcc

guess
]
Enown key bits di = 0
-rf,"' |:'1I:I| 1
do |dy - i1 Branch decision for guessed it
£y L3 - (R -‘-"“"_ 1
. d; =1
Stepl: Trace of taken or not taken branches (t;'s) 5
for a sample input m wht
Step 2: if T(ty,ty,---,8) =t

then add m to M,
else add m to A,

if T(ty,ta,--- . t;) =27,
then add m to Ms
else add m to M,

EB M, = {m|m does not cause a miss during MM of (i + 1)*"
squaring if d; = 1}

E M, = {m|m causes a misprediction during MM of (i + 1)/
squaring if d;, = 1}

M3 = {m|m does not cause a miss during MM of (i + 1)t
squaring if d; = 0}

M, = {m|m causes a misprediction during MM of (i + 1)*"

squaring if d; = 0}

We ensure that there must be no common ciphertexts in sets
(M1, M3) and (Ms, M4) and the sets should be disjoint.

The probable next bit is decided by the following:
> If(avg(Mar,) > avg(May,)) and (avg(Myy,) < avg(Mag,)), then
the next bit (nb;) =1

» Otherwise, if (avg(Myy,) > avg(Myy,)) and
(avg(Mar,) < avg(May,)) then, next bit (nb;) =

Algorithm 4: Adversary Attack Algorithm

Input: (dp. dy,--- .di_1).M
Output: Probable next bit nb;
begin
Offline Phase;
for ¥m € M do
Generate taken/ not-taken trace for input mas £, 1.t 2, "+ s tm i s
Assume d; = 0 and 1, generate tﬂm,i+1' tr];,“-_l respectively;
Pm,i+1 = T(rm,]_e Im 25" " .-rm,f] ;
if priv1 = r};”_l then
Add m to My ;

end
else
Add m to M> ;
end
if Prm,is1 =ty ;51 then
Add mto M3 ;
end
else
Add m to My ;
end
end
Remove Duplicate Ciphertexts in the sets My, Ma and Mo, Ma:
Online Phase;
Observe distribution of branch misses from performance counters as Mpg . My, Mgy Magy

if (avg(MMi] > avg MMI }) and (avg(MM4] < avg(MMB) then
end =i
if (avg(My,] > avg(Mpy) and (avg(Mpg,) < avg(Mgy) then

nb; =

end
return nb; ;

en

The probable next bit is decided by the following:
> lf(avg(Ma,) > avg(May,)) and (avg(Ma,) < avg(Mag,)), then
the next bit (nb;) = 1

» Otherwise, if (avg(Mr,) > avg(My,)) and
(avg(Ma,) < avg(May,)) then, next bit (nb;) = 0

Al

Input
Outp
begi

M, -no simulaied mizs. 4
L i
500 &0 T

Avg Brarohmisses fom Patormanas Cour o
Avg Bmnch misses imm Performance Counk e

(a) Correct Assumption d; = 1 (b) Incorrect Assumption d; = 0

Figure: Branch misses from HPCs on square and multiply correctly identifies secret bit
d; = 1, ciphertext set partitioned by simulated misses of two-level adaptive predictor

N

Observe distribution of branch misses from performance counters as My, Mpgy s Mpgg s Mgy

if (avg(,;f\ffm;i] > avg(Mpy,) and (avg(Mpy,) < avg(Mp,)) then
no; = ;

end

if (QVE[EMM) > avg(Mpy)) and (avg(Mg,) < avg(My,) then
noy = »

end

return nb; ;

en

Reverse Engineering of Branch

Prediction

We perform a reverse engineering of the branch predictor
hardware and found that the behavior has a significantly
high correlation to the deterministic 3-bit predictor

characteristics.

Branch prediction hardware design is proprietary of the processor

manufacturer.

» The perf class is instantiated with
particular hardware event.

» We incorporate start and stop calls
before and after the target
conditional if-else structure.

» This returns event counts at
regular interval and measurements
are synchronous to the execution
of the conditional block.

BrEtlc -Jﬁ?ll'lg
parf_svant_open(struct perf_ovest_attr shw_eveat, pid_t pid,
ist cpu, ot growp_fd, unaigned long flaged
1
1o ret;

ot = syscalld__NB_peri_ewent_opem, hv_ovent. pid. cpu,
groap_fd, flage);
return rat;

1

woid start()

int rc = ioctl{fd_, PERF_EVENT_IDC_RESET, 07;
BASETE (TS == 0}

re = ioctl{fd_, PEAF_ENENT_IDC_EWAELE, 03 ;
BASETE (P == Q)]

alze_t aropld
1

int rc = 1octl{fd_, PERF_EVENT_IDC_DISABLE, 0% ;
AISETEITS == 0]

size_% comnk;

int got = readifd. . kcoumt, sizeoflcountl);
aszart (got == sizeof(counmt)};

FATIIN COTE |

I (). T
MNehalem 0.73

I .58 .
s :2—]:111'

N (). OS5 :
| 0.98 = 3 bit

Ay B € N (. 5

I, (.02

N (.75
e, ().f

Broadwell 0.9

I (). T4

Haswell

ictor model: 2-bit saturating counter state machine . .
i s I Model accuracy on average for the 2-bit and 3-bit sat-
l: oy]'I]'ﬂ ﬂ = - w
58 ol ! et ~o—Nehalem | 12 counter state machines, for four micro-architectures.
g2 6o |- ' E =0 Sandy Bridge | i
E % 40 i | == Haswell
w5 B ' ' —¢— Broadwell
El o 200 o .

| | |

g% 053 % "0 6 = 100

Percentage of mismatches

[Predictor model: 3-bit saturating counter state machine]

é v 100 —?—W_E

g g L | i i =0— Nehalem |
5 ' | 1)

&, 5 - B = Sandy Bridge

W 60 - 1 1 _

2 g 0l ! —&— Haswell

) i —4— Broadwell

ERP : -

E %D D | ‘Jll..-lll | | |

) 0 20 40 60 80 100

Percentage of mismatches

Deduce & Remove Attack on Blinded Scalar
Multiplication with Asynchronous perf ioctl Calls

Overview

» HPCs are potential side channel source for
implementations using conditional branching where the
hardware is typically shared between multiple users.

» However, existing research considers blinding techniques,
like scalar blinding, scalar splitting as a mechanism of

thwarting such attacks.

» We reverse engineer the undisclosed model of Intel’'s
Broadwell and Sandybridge branch predictor and further
utilize the unexplored perf ioctl calls in sampling mode to
granularly monitor the branch prediction events
asynchronously when a victim cipher is executing.

Objective

» We target the harder problem of attacking the DPA secure
implementations such as scalar splitting and scalar blinding
using the perf ioctl system calls.

» The samples obtained are inherently noisy because of its
asynchronous nature.

» Traces obtained lack proper synchronization and
measurements at regular time-step.

» The target algorithm being randomized in nature adds to
the difficulty of attacking with such coarse measurements.

Principle

Thus we follow by a principle of,

» Acquire: obtain branch misprediction traces over the scalar
multiplication.

» Deduce: every randomized trace should reveal partial key
bits.

» Remove: if a randomized trace does not leak any

information regarding the trace, then the attacker should be
able to isolate and remove the trace.

Scenarios

Process 1 Process 2

L Peset the Branch miss
" couniers 0 260

P st rhe Banch ress
2 Rebast he nstucaon

S carieniolen
.+ 2 Frfrest e remicon
¢

ke ek B Pacsasm s
R
e
(a) Scenario using Perf sampler in asynchronous (b) Using Perf sampler in asynchronous sampling

sampling mode mode from two different scripts

Understanding Branch Mispredictions
Existing DPA countermeasures on ECC

Scalar Randomization[1]

If K is the secret scalar and P € E the base point, instead of
computing K times P, randomize the scalar K as K' = K + 7 x #F
where r is a random integer and #F is the order of the curve.

Scalar Splitting

In [2], to randomize the scalar such that instead of computing K P, the
scalar is split in two parts K = (K — r) + r with a random r, and
multiplication is computed separately, KP = (K —r)P + rP.

Point Blinding

This computes K (P + R) instead of K P, where K R can be stored in
the system beforehand, which when subtracted K (P + R) — K R gives
back K P.

BTB structure and Collision

branch target address

branch instruct on
with matched tags

address
- tag 1 target addressl —m
o tag 2 target address 2 -
- tag 3 tatget address 3 —
first match
—
o tag 11 target addressn -
covter

Threat Model

Victim

signal

s

h:iIIl[1|.rir1Ein’||_|';:|i-u:l]Hfi;II
a

victim_func() (&)

sleep() (@)

' n CJELE.‘-S

spy_lfu r‘n-::l[]'_J @
|—repeat—

Always executes taken
branch which jumps to
target address TA_spy

Spy

Could execute a taken

or not-taken branch Victim

Measures the access
time of the target

Measure
address TA_spy

Secure Predictors

1.

Contributions

The primary contribution of this work is a secure design of branch
predictor: A-confidence predictor which invalidates the direct
proportionality of branch mispredictions from known predictor
stfructures.

A hashed indexing scheme which is essential to prevent branch
collision based attacks on the shared table structures such as BTB and
PHT.

Performance comparison of the new predictor to state-of-art
predictors like Gshare and more recent TAGE-based predictors using
traces from SPEC-2006, server and multimedia benchmarks in terms of
MisPredictions per Kilo Instructions (MPKI) and misprediction penalty, to
demonstrate that the design do not compromise on performance.

Lastly, test for security on cryptographic implementations and the
design has lesser information leakage than predictors in literature.

Why Is It Important fo design secure
branch predictors ¢

“Does making cryptographic implementations free from condifional
branching totally do away with the threat of micro-architectural
attacks caused due to the branch predictorse”

Insecurity of Commercial Intel Systems

Eaken taken takin
waakly weaky take
Tt taken not taken it taken
(a) 2-bit dynamic predictor (HP06). (b) Alternative structure of 2-bit dynamic predictor (HP06).

"E_ 580 T T T T T T
E 560 i
oy
E 540 - -
=
9 520 -
=
2 so0 - B
E 480
5 i i
E aeo .
g 440 1 1 1 1 1 1
% 440 450 480 500 520 540 560 580

Simulated branch misses from 2-bit dynamic predictor

InSecurity for TAGE based predictor structures

pe. h[0:Li1)] pe | h[(:Li2)] pe, | h[(:Li3)] pe, h[0:Lid)]

pe fﬁ~% fﬂaJ—UstlﬁJ (MEEL) fﬂaﬂ—(ﬁa—slm

T1 T2 T3 T4

;J I 1 I I |] I
= pred, tag | u pred, tag ,u pred, tag | u pred, tag ,u
8- i 1 | i 1] |

How are TAGE predictors vulnerable

QA Initial branches, where there are no matched tags in any of the component
structures: This is the phase when the execution just starts and the index
decided by the program counter xored with none of the previous history,
do not match with any stored tags in the computed indices. In this part of
the execution, the predictions are made using the base predictor.

d When there are some tags which match the existing history based tags and
some does not. In this case, the 3-bit predictor of the first component table
and the base predictor are most likely to provide the prediction.

d Third case arises, for the final bits of execution which shows tag, index
match in multiple component tables of TAGE. But the final prediction is such
that in each of these component tables the 3-bit predictors provide the
final prediction.

How are TAGE predictors vulnerable

Percentages of matches with the individual components

100 - N %0
N . 78
B
= 63 64 65 66 67
>
% 50 4U8
L
3 36 33 33 33 30
19 17
15 11 10
0 200 00 00 30 30 10 10 30 o 3
0 100 200 300 400 500 600 700 800 900

Cumulative matches of consecutive 100 bits

UDBase Predictor ~ 0 OFirst Component [l0Second Component U0 Third Component

Aim of A Predictor: Performance + Security

« Performance for Benchmark Programs

« Security for Sensitive Applications

Adding Lambda confidence to generic
predictor model

J'- k‘
IIr "
NolTakens 2 580 T T . . T .
| _ L
(E0E_ IJ ’,-"' ~ Mol Taken & '_,.-'- -
WAy RN N £ se0l .
! PredictTaken - i '- =
\:_/ EPEaIn S 540 - |
g
Taken
g 520 | -
Takgn I L] D tEE
} S soof §
.-d'_ . B —
\‘& Hot Taken y _Lahar & jcond Q=)= 10 = L
Predit not Tekan Pradizt not Takan 5 480 lambda = 10 —+ A
n P =) lambda = 15
......... . 2 40l lambda = 20 .
Tk & b lambda = 25 —+—
0 lambda = 30 ——
I.':I]If[l 0 o 440 1 1 1 1 1 1
Tamu 440 450 480 500 520 540 560 520
Simulated branch misses from 2-bit dynamic predictor
(a) A-confidence predictor. (b) Branch misses plotted for various values of A across misses from

2-bit branch predictor.

Effect of Lambda on Gshare
predictors

Fraquendies

200 T T T T T T T T
250] g
200 | 4
150 | 4
100 |ambda - 0 7
|ambda - 5
50 | |lambda - 10 -
lambda = 15
ur |lambda - 25 7
lambda - 30
50 , , , , , , ! ,
420 440 460 480 500 520 540) 580 &00

Simulated branch misses

Branch address

History Register

- taken 7

440 . .

larmbda = 0
lambda = 1

lambda = & +
lambda = 10 ——
lambda = 15
lambda = 20

lambda = 25 +

lambda - ?EI —_—

Oteered branch misses ower Gshansambd:
2
)
1

1
4400 480 420 =00

1 1
520 a0

BED

Simulaied branch misses from Gshare peedicior

Gitable

prediction bais

Branch misses plotted for various values of A across misses from Gshare structure.

Securing BTB from collision based attacks

Pe n-bits of Yirtual Address Branch Hislory Repisier
T frc)] F
HASHED-PG
n-bits permutation of the Virttual A)
Addras "_J_,J'_
—
Cirection Prediciion
Branch Target Buffer
Addrezs
Tarpe! Address
Tag Patiern Hislory Table
[~ m-bits of PO
Index o the EITEI=_ »

Targai Predicfion

Condiional Mispredictions per Kilo Instructions (MPKI

69

6.85

68

6.75

6.7

6.65

6.6

6.55

65

6.45

Results on values of Lambdao

Gahws Lmas-i Lmas-d Lmaa<d Lman-f Lmaa-d Lmaa-F Lmaa-2 Lmoa-# Lmas-100man-110maa-1 Simaa-1 Slmaa- 1 dlmaa-ail mas-d4Lman-SbLmaa-Gk

Predictors varying with lambda

MPKI

Mispredicion penalty (oycles)

4.05e+07

4a+07

3.85e+07

3.9e+07

3.85e+07

3.8e+07

3.75e+07

Ganars Lmas-% Lmand Lmaa-d Lmas-f Lmaa-d Lmaa-7 Lmaa-f Lmaee# Lmaa- 100mase ibman-1 3maa-1 fmeaine- 1 i mei- S0m da-id m oS man-3d

Predictors varving with lambda

Misprediction Penalty

Performance of A + ISL-TAGE

Comparison

IS L-TASE
s Lambda+ISL-TAGE
GO0
3000
=
==
-_
00000
1000
o

] 5 10 15 20 25 30 35 0y

Performance of A+ISL-TAGE predictor on CBP3 Benchmark

Inconclusive DOM results after
iInfroducing A

. 0 _ =0 -
= + .
E s “ e g 13 + ® . E
t + 7 B + = + u
L[] L] g - w e w++ H [R ¥ e + 3
- s Y ot A R . . at T HELT +.+ = 4 B tErF .
g 5 *'..';_,._Ef" N -:,_;Hi._, ?ﬁ“‘t& o 1"}“‘* £ ’21-".»""“% *!-?‘3':-.,_; é - _;_‘_,1.-_.;1;_ ot T T iy fpil-'-'l}:-lﬂ H':;M—
- = # H Tk By + - g
@ F':.f N "n'"-: rﬁﬁ#; :ﬁ.‘-‘ﬂ- L e ""'3; E o i.":"!- atiapel TR T Ty e ”ff‘ -2 ,é
N R XY P aiiel e T - i |- e o e T o I L
= Y s + ":.,_1_ ++:4, +u T _a."‘n'i"' '“-. "q_'*-r] 5 +E B o - + +% & *or f-r e - +* 7
C) - - |4 L =
E 13 5wt T ﬂ.,_i--d'_'_ LI + + E o b L h + ot w4 i
+ = . " +
B s + . = " g ﬁ; + - Boam " correct 1'+ T
= ¢t incatrect = incorrect =
=0 . L h =0 L L L h
1] oo z00 300 Ll 500 o 100 Sl 300 400 500
BEit pomitions Bit posstiona

{a) Branch misses for guess 0.

Branch Prediction Attack on RSA-OAEP Randomized Padding Scheme

{b) Branch misses for puess 1.

THANK YOU FOR YOUR
ATTENTION!

