
Efficient security for memory:
A hardware perspective

*Collaborators: Shivam Swami (Micron) and Kartik Mohanram (University of Pittsburgh)

Joydeep Rakshit*
PARL, Intel Labs

Contact: joydeep.rakshit@intel.com

1st Workshop on MicroArchitectural Security
IIT Madras October 11, 2019

 Memory security
 The 3 basic pillars

 Trusted Computing Base

 Data confidentiality

 Data integrity

 Access pattern obfuscation
 Oblivious RAM

 Our work

Agenda

 Memory security
 The 3 basic pillars

 Trusted Computing Base

 Data confidentiality

 Data integrity

 Access pattern obfuscation
 Oblivious RAM

 Our work

Agenda

 Cornerstones of secure platform: CIA [1]
 Confidentiality

 Integrity

 Availability

Memory Security

Credit: http://www.cybersafesolutions.com/wp-content/uploads/2016/08/CSS_ThreatPolicies_CIAgraphic.jpg

[1] R. B. Lee, “Security basics for computer architects,” Synthesis Lectures on Computer Architecture, 2013

 Cornerstones of secure platform

 Confidentiality
 Plaintext data should not be visible to adversary

 Integrity

 Availability
Credit: http://www.cybersafesolutions.com/wp-content/uploads/2016/08/CSS_ThreatPolicies_CIAgraphic.jpg

[1] J. Cong et al., “Improving privacy and lifetime of PCM-based main memory,” DSN, 2010
[2] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main memory system with incremental encryption,” ISCA, 2011
[3] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories,” ASPLOS, 2015
[4] A. Awad et al., “Silent Shredder: Zero-cost shredding for secure non-volatile main memory controllers”, ASPLOS 2016
[5] S. Swami et al., “SECRET: Smartly EnCRypted energy EfficienT non-volatile memories”, DAC, 2016

Memory Security

 Cornerstones of secure platform
 Confidentiality

 Integrity
 Adversary cannot perform undetected data tampering

Credit: http://www.cybersafesolutions.com/wp-content/uploads/2016/08/CSS_ThreatPolicies_CIAgraphic.jpg

[1] J. Rakshit and K.Mohanram, “ASSURE: Authentication Scheme for SecURE Energy Efficient Non-Volatile Memories”, DAC, 2017

Memory Security

 Cornerstones of secure platform
 Confidentiality

 Integrity

 Availability
 System (in this case, memory) should be able to serve

requests without stalling.

[1] M. Qureshi et al., “Enhancing lifetime and security of PCM-based main memory with start-gap wear leveling”, MICRO, 2009
[2] N.H. Seong et al., “Security Refresh: Prevent malicious wear-out and increase durability for phase-change memory with dynamically randomized address mapping”, ISCA, 2010
[3] F. Huang et al., “Security RBSG: Protecting phase change memory with security-level adjustable dynamic mapping”, PDPS, 2016.

Memory Security

Credit: http://www.cybersafesolutionscom/wp-content/uploads/2016/08/CSS_ThreatPolicies_CIAgraphic.jpg

 Cornerstones of secure platform
 Confidentiality

 Integrity

 Availability

 Threat model
 Trusted Computing Base (TCB)

Memory Security

 Cornerstones of secure platform
 Confidentiality

 Integrity

 Availability

 Threat model
 Trusted Computing Base (TCB) [1-4]

 Processor chip: Processor core, registers, caches, etc…

 Critical parts of OS Secure

[1] R. B. Lee, “Security basics for computer architects,” Synthesis Lectures on Computer Architecture, 2013
[2] G. E. Suh et al., “Efficient memory integrity verification and encryption for secure processors,” MICRO, 2003
[3] B. Rogers et al., “Using address independent seed encryption and Bonsai Merkle Trees to make secure processors OS-and performance-friendly”, MICRO, 2007
[4] A. D. Hilton et al., “PoisonIvy: Safe speculation for secure memory,” in MICRO, 2016

Memory Security

 Cornerstones of secure platform
 Confidentiality

 Integrity

 Availability

 Threat model
 Trusted Computing Base (TCB) [1-4]

 Processor chip: Processor core, registers, caches, etc…

 Critical parts of OS

 Untrusted components
 Off-chip resources: Memory, buses, etc.

Secure

[1] R. B. Lee, “Security basics for computer architects,” Synthesis Lectures on Computer Architecture, 2013
[2] G. E. Suh et al., “Efficient memory integrity verification and encryption for secure processors,” MICRO, 2003
[3] B. Rogers et al., “Using address independent seed encryption and Bonsai Merkle Trees to make secure processors OS-and performance-friendly”, MICRO, 2007
[4] A. D. Hilton et al., “PoisonIvy: Safe speculation for secure memory,” in MICRO, 2016

Unsecure

Memory Security

Memory Bus

 Memory security
 The 3 basic pillars

 Trusted Computing Base

 Data confidentiality

 Data integrity

 Access pattern obfuscation
 Oblivious RAM

 Our work

Agenda

Data Confidentiality

 Prevention of unauthorized leakage of plaintext data to adversary

 Attack vectors
 Bus snooping [1,2]

 Direct memory access (DMA)/Memory dump and scan [3]

 Cold boot attacks [4]

 Solution: Encryption of data stored in memory

[1] A. Huang, “Hacking the Xbox: An Introduction to Reverse Engineering” No Starch Press, 2003
[2] A. B. Huang, “The Trusted PC: Skin-Deep Security”, IEEE Computer, 2002
[3] A. Kumar, “Discovering Passwords in Memory”, http://www.infosecwriters.com/text_resources/, 2004
[4] J. A. Halderman, “Lest We Remember: Cold Boot Attacks on Encryption Keys”, USENIX Seurity Symposium, 2008

Data Confidentiality

 Direct data encryption
 One-way function (cipher like AES) + Global key

 Problem: Dictionary-based attacks

 Objective: Spatial and temporal uniqueness in encryption
 Spatial: Ciphertexts of the same plaintext data at different addresses is unique

 Temporal: Ciphertexts of the same plaintext data at same address is unique across
different writes

 Solution: Counter-mode encryption (approved by NIST)

[1] A. Huang, “Hacking the Xbox: An Introduction to Reverse Engineering” No Starch Press, 2003
[2] A. B. Huang, “The Trusted PC: Skin-Deep Security”, IEEE Computer, 2002
[3] A. Kumar, “Discovering Passwords in Memory”, http://www.infosecwriters.com/text_resources/, 2004
[4] J. A. Halderman, “Lest We Remember: Cold Boot Attacks on Encryption Keys”, USENIX Seurity Symposium, 2008

Data Confidentiality

 Counter mode encryption
 One time pad (OTP): Random and unique

 Secret key (randomness)

 Cache line address (spatial uniqueness)

 Counter per cache line (temporal uniqueness)

[1] J. Yang et al., “Improving memory encryption performance in secure processors”, IEEE Trans. Computers, 2005
[2] W. Enck et al.,“Defending against attacks on main memory persistence”, ACSAC, 2008
[3] J. Kong and and H. Zhou, “Improving privacy and lifetime of PCM-based main memory”, DSN, 2010
[4] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories”, ASPLOS, 2015

Secure Processor

One-time Pad
(OTP)

Line
Address

Counter

Plaintext

Ciphertext
Key

Encryption on write

Decryption on read

Block
cipher

Ciphertext

Memory

Data Confidentiality

 Counter mode encryption
 Low decryption latency

 OTP: Requires counter, address, secret key
 Address + secret key available on processor

 Counter stored along with data in memory

 Needs to be on the processor

 Counter cache: Caches counters on processor
Memory

[1] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories”, ASPLOS, 2015

Figure credit: [1]

 Memory security
 The 3 basic pillars

 Trusted Computing Base

 Data confidentiality

 Data integrity

 Access pattern obfuscation
 Oblivious RAM

 Our work

Agenda

 Prevention of undetected, unauthorized tampering of data by adversary

Data Integrity

 Memory data integrity: Attacks

 Spoofing

Data Integrity: Attacks

A B C D

 Memory data integrity: Attacks

 Spoofing

Attacker changes data at
a particular memory location

A X C D

A B C D

Data Integrity: Attacks

 Memory data integrity: Attacks
 Spoofing

 Splicing

A D C B

Attacker swaps data
between 2 memory locations

A B C D

Data Integrity: Attacks

 Memory data integrity: Attacks
 Spoofing

 Splicing

 Replay

Ti
m

e
t 1

t 2 W B Y Z

Attacker replays data;
replaces new data with older versions

A B C D

Data Integrity: Attacks

 Memory data integrity: Authentication
 HMAC: Hashed Message Authentication Code

 Keyed cryptographic hash signature

 Stored along with data in memory

 Prevents spoofing, prone to splicing and replay

Data
DH DH DH DH

DH = HMACK (D)

Secret key

Memory Authentication

 Memory data integrity: Authentication
Merkle Tree

Data

DH DH DH DH

DH DH

DHROOT

Secure Processor

Merkle Tree (MT): Data structure
constructed by recursive hashing,
culminates in a root stored on
secure processor.
• Secure root cannot be spoofed,

spliced, or replayed, hence data
is tamper-proof.

Memory Authentication

 Memory data integrity
 Bonsai Merkle Tree (BMT) [1]

 Authentication uses encryption counters

 Protecting counters ensures trusted decryption

Encrypted Data Encryption Counters

DH DH DH DH CH CH CH CH

CH CH

CHROOT

Secure Processor

[1] B. Rogers et al., “Using address independent seed encryption and Bonsai Merkle Trees to make secure processors OS- and performance-friendly”, MICRO, 2007

DH

CH

= HMAC (Encrypted data || Address || Ctr)

= HMAC (Ctr)

Memory Authentication

Concatenation

 BMT: Operating details

Secure processor

Secure
root

M20 M21

R

L0 L1 L2 L3 L4 L5 L6 L7

M10 M11 M12 M13

Secure processor

D0 D1 D2 D3 D4 D5 D6 D7

H1 H2 H3 H4 H5 H6 H7H0

Access 1

Counter read/updated

Nodes traversed for authentication

Memory Authentication

Secure processor

Secure
root

M20 M21

R

L0 L1 L2 L3 L4 L5 L6 L7

M10 M11 M12 M13

Secure processor

D0 D1 D2 D3 D4 D5 D6 D7

H1 H2 H3 H4 H5 H6 H7H0

Access 2

Counter read/updated

Nodes traversed for authentication

Memory Authentication

 BMT: Operating details

Secure processor

Secure
root

M20 M21

R

L0 L1 L2 L3 L4 L5 L6 L7

M10 M11 M12 M13

Secure processor

D0 D1 D2 D3 D4 D5 D6 D7

H1 H2 H3 H4 H5 H6 H7H0

Access 3

Counter read/updated

Nodes traversed for authentication

Memory Authentication

 BMT: Operating details

Secure processor

Secure
root

M20 M21

R

L0 L1 L2 L3 L4 L5 L6 L7

M10 M11 M12 M13

Secure processor

D0 D1 D2 D3 D4 D5 D6 D7

H1 H2 H3 H4 H5 H6 H7H0

Access 4

Counter read/updated

Nodes traversed for authentication

Memory Authentication

 BMT: Operating details

Secure processor

Secure
root

M20 M21

R

L0 L1 L2 L3 L4 L5 L6 L7

M10 M11 M12 M13

Secure processor

D0 D1 D2 D3 D4 D5 D6 D7

H1 H2 H3 H4 H5 H6 H7H0

Access 5

Counter read/updated

Nodes traversed for authentication

Memory Authentication

 BMT: Operating details

 Memory security
 The 3 basic pillars

 Trusted Computing Base

 Data confidentiality

 Data integrity

 Access pattern obfuscation
 Oblivious RAM

 Our work

Agenda

Revisiting Confidentiality

 Confidentiality
 Ensured by data encryption

 Security assumption: Secret key is secure
 Does not hold in presence of side-channels

 Traditional memory request for encrypted memory
 Data encrypted

 Address and commands unencrypted

Revisiting Confidentiality

 Illustration: Security vulnerabilities of exposing access patterns
 A section of exponentiation function in public-key cryptosystems [1]

 y = xk; where x = input, k = secret key

 Following the access pattern, the attacker can decipher the secret key
 No knowledge of addresses of ‘r’ and ‘s’, it gets 2 possible options, the key and it’s complement

for i=0 to N-1{
if (secret_key[i] == 0)

r = <computation1>
else

s = <computation2> }
Address of ‘r’: 0x00
Address of ‘s’: 0x20

[1] T. John et al., “Connecting the dots: Privacy leakage via write-access patterns to the main memory,” HOST, 2017

0x00, 0x20, 0x20, 0x00, …

Revisiting Confidentiality

 Plaintext address presents security vulnerabilities
 Access patterns can reveal

 Encryption keys, eliminating the security guarantees of encryption [1,2]

 Control flow graph for the program, leading to lP leakage [3]

 Require access pattern obfuscation for confidentiality

[1] M. S. Islam et al., “Access pattern disclosure on searchable encryption: Ramification, attack and mitigation,” NDSS, 2012
[2] T. John et al., “Connecting the dots: Privacy leakage via write-access patterns to the main memory,” HOST, 2017
[3] X. Zhuang et al., “HIDE: An infrastructure for efficiently protecting information leakage on the address bus,” ASPLOS, 2004

 Objective: Memory access pattern obfuscation [1]
 No information leakage about

 Address being accessed

 Plaintext data at the accessed address

 Type of memory access: Read or write

 Linkability: Whether same address is being accessed

Access Pattern Obfuscation

[1] E. Stefanov et al., “Path ORAM: An Extremely Simple Oblivious RAM Protocol”, CCS, 2013

Oblivious RAM

[1] R.Ostrovsky et al., “Private information storage”, STOC, 1997
[2] E. Stefanov et al., “Towards practical Oblivious RAM”, NDSS, 2012
[3] J. Dutrich et al., “Burst ORAM: Minimizing ORAM response times for bursty access patterns”, USENIX Security, 2014
[4] E. Shi, et al., “Oblivious RAM with O((log n)3) worst-case cost”, ASIACRYPT, 2011
[5] E. Stefanov et al., “Path ORAM: An Extremely Simple Oblivious RAM Protocol”, CCS, 2013
[6] R. Wang et al., “Cooperative Path-ORAM for effective memory bandwidth sharing in server settings,” HPCA, 2017.
[7] R. Wang et al., , “D-ORAM: Path-ORAM delegation for low execution interference on cloud servers with untrusted memory,”, HPCA 2018.

 Oblivious RAM algorithms
Widely used to achieve complete access pattern obfuscation

 2 major categories
 Hierarchical ORAM [1-3]

Memory arranged as a tiered hierarchy

 Suitable for large client storage

 Tree based ORAM [4-7]
Memory arranged as a binary/N-ary tree

 Suitable for small client storage

 Path ORAM: simplest and most efficient

 Path ORAM comprised of
 Untrusted external memory

 Trusted ORAM controller

 Address nomenclature
 Virtual (Program) Logical ORAM

Path ORAM

Page Table ORAM controller

 External memory organized as a binary tree
 Each logical address (LA) data block is randomly mapped to a leaf (LeafID)

 The unique path from the root at any leaf x is called path-x

 Each node is termed a bucket
 Each bucket can hold Z encrypted data/dummy blocks (cache lines)

Path ORAM

0 1 2 3 4 5 6 7

Z=4

DIMM

Processor chipTrusted

Untrusted

 ORAM controller: Frontend
 LA queue: Buffers memory requests from LLC misses

 PosMap: Stores random mapping to LA to leaves (LeafID)

 Address Logic: Generates ORAM addresses for nodes on a given path

Path ORAM

LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req.

(Data, Leaf Label, LA)

Return data
to LLC

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)

O
R

A
M

C

o
n

tr
o

lle
r

Processor
chip

DIMM

LA Queue

ORAM
tree

Trusted

Untrusted

 ORAM controller: Frontend
 LA queue: Buffers memory requests from LLC misses

 PosMap: Stores random mapping to LA to leaves (LeafID)

 Address Logic: Generates ORAM addresses for nodes on a given path

Path ORAM

LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req.

(Data, Leaf Label, LA)

Return data
to LLC

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)

O
R

A
M

C

o
n

tr
o

lle
r

Processor
chip

DIMM

LA Queue

ORAM
tree

Trusted

Untrusted

 ORAM controller: Frontend
 LA queue: Buffers memory requests from LLC misses

 PosMap: Stores random mapping to LA to leaves (LeafID)

 Address Logic: Generates ORAM addresses for nodes on a given path

Path ORAM

LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req.

(Data, Leaf Label, LA)

Return data
to LLC

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)

O
R

A
M

C

o
n

tr
o

lle
r

Processor
chip

DIMM

LA Queue

ORAM
tree

Trusted

Untrusted

 ORAM controller: Backend
 Encryption/decryption units: Encrypts/decrypts data block

 Stash: Stores decrypted data blocks fetched from ORAM

Path ORAM

LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req.

(Data, Leaf Label, LA)

Return data
to LLC

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)

O
R

A
M

C

o
n

tr
o

lle
r

Processor
chip

DIMM

LA Queue

ORAM
tree

Trusted

Untrusted

 ORAM controller: Backend
 Encryption/decryption units: Encrypts/decrypts data block

 Stash: Stores decrypted data blocks fetched from ORAM

Path ORAM

LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req.

(Data, Leaf Label, LA)

Return data
to LLC

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)

O
R

A
M

C

o
n

tr
o

lle
r

Processor
chip

DIMM

LA Queue

ORAM
tree

Trusted

Untrusted

 The main invariant by construction
 A data block, mapped to a leaf x is either in any bucket on the path-x or in the stash

 On an LLC miss
 The ORAM controller is queried with the accessORAM (addr, op, data) interface

 The ORAM controller performs an ORAM access
 Read phase

Write phase

Path ORAM

0 1 2 3 4 5 6 7

Z=4

B0

B1

B2

B3

Path ORAM

LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req. for LA 1
accessORAM (1, read, null)

Leaf 6

Memory addresses
for path-6

Encrypted blocks
for path-6

(Data, Leaf Label, LA)

Return data
for LA 1 to LLC

12

4

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)
O

R
A

M

C
o

n
tr

o
lle

r

Processor
chip

DIMM

LA Queue

O
R

A
M

 T
re

e

in
 m

ai
n

 m
e

m
o

ry
(U

n
tr

u
st

e
d

)
Level 0

Level 1

Level 2

Level 3
(Leaves)

0 1 2 3 4 5 6 7

Z=4

 Path ORAM access
 Illustration

 Read LA 1

3

5

 Security
 Address: Randomized mapping secret from adversary

 Plaintext data: Encrypted

 Type of memory access: Both read and write phase for each ORAM access

 Linkability: Remapping after every access, path access

 New ORAM architectures
Must preserve baseline Path ORAM guarantees

Must not leak additional useful information

Path ORAM

 Memory security
 The 3 basic pillars

 Trusted Computing Base

 Data confidentiality

 Data integrity

 Access pattern obfuscation
 Oblivious RAM

 Our work

Agenda

Emerging Non-Volatile Memories

 Main memory requirements and DRAM drawbacks
 Capacity: DRAM density hard to scale [1]

 Energy: High DRAM refresh power due to leakage [2-8]

 PCM and RRAM: Emerging NVMs [2-8]
 Better scalability

 High data density (MLC – 2 bits/cell, TLC – 3 bits/cell)

 Data persistence – no refresh power

[1] International Technology Roadmap for Semiconductors, 2011
[2] M.K.Qureshi et al., “Scalable high performance main memory system using phase-change memory technology”, ISCA, 2009
[3] B. C. Lee et al., “Phase change technology and the future of main memory,” IEEE Micro, 2010
[4] A. Ferreira et al., “Increasing PCM main memory lifetime,” DATE, 2010
[5] S. Sheu et al., “Fast-write resistive RAM (RRAM) for embedded applications,” IEEE Design and Test of Computers, 2011
[6] S. Bock et al., “Analyzing the impact of useless write-backs on the endurance and energy consumption of PCM main memory,” ISPASS, 2011
[7] L. Jiang et al., “Improving write operations in MLC phase change memory,” HPCA, 2012
[8] C. Xu et al., “Understanding the trade-offs in multi-level cell ReRAM memory design,” DAC, 2013

 Main memory requirements and DRAM drawbacks
 Capacity: DRAM density hard to scale [1]

 Energy: High DRAM refresh power due to leakage [2-8]

 PCM and RRAM: Emerging NVMs [2-8]
 Better scalability

 High data density (MLC – 2 bits/cell, TLC – 3 bits/cell)

 Data persistence – no refresh power

 Low endurance

 High write energy/latency
[1] International Technology Roadmap for Semiconductors, 2011
[2] M.K.Qureshi et al., “Scalable high performance main memory system using phase-change memory technology”, ISCA, 2009
[3] B. C. Lee et al., “Phase change technology and the future of main memory,” IEEE Micro, 2010
[4] A. Ferreira et al., “Increasing PCM main memory lifetime,” DATE, 2010
[5] S. Sheu et al., “Fast-write resistive RAM (RRAM) for embedded applications,” IEEE Design and Test of Computers, 2011
[6] S. Bock et al., “Analyzing the impact of useless write-backs on the endurance and energy consumption of PCM main memory,” ISPASS, 2011
[7] L. Jiang et al., “Improving write operations in MLC phase change memory,” HPCA, 2012
[8] C. Xu et al., “Understanding the trade-offs in multi-level cell ReRAM memory design,” DAC, 2013

Emerging Non-Volatile Memories

 PCM and RRAM: Emerging NVMs
 Better scalability

 High data density (MLC – 2 bits/cell, TLC – 3 bits/cell)

 Data persistence – no refresh power

 Low endurance

 High write energy/latency

[1] B. Young et al., “A low power phase change random access memory using a data-comparison write scheme,” ISCS, 2007
[2] S. Cho et al., “Flip-N-Write: A simple deterministic technique to improve PRAM write performance, energy and endurance,” MICRO, 2009
[3] P. Palangappa et al., “Compex: Compression-expansion coding for energy, latency, and lifetime improvements in MLC/TLC NVM”, HPCA, 2016
[4] M. Qureshi et al., “Enhancing lifetime and security of PCM-based main memory with Start-Gap wear leveling,” MICRO, 2009
[5] S. Schechter et al., “Use ECP, not ECC, for hard failures in resistive memories”, ISCA, 2010
[6] R. Wang et al., “SD-PCM: Constructing reliable super dense Phase Change Memory under write disturbance”, ASPLOS 2015
[7] L. Jiang et al., “Improving write operations in MLC phase change memory”, HPCA, 2012
[8] X. Zhang et al., “TriState-SET: Proactive SET for improved performance of MLC phase change memories”, ICCD, 2015
[9] J.Li et al., “Write-once-memory-code phase change memory”, DATE, 2014

Architecture based solutions
1. Cell flip reduction [1-3]
2. Wear levelling and error-correction [4-6]
3. Data mapping [7-9]

Emerging Non-Volatile Memories

 PCM and RRAM: Emerging NVMs
 Better scalability

 High data density (MLC – 2 bits/cell, TLC – 3 bits/cell)

 Data persistence – no refresh power

 Low endurance

 High write energy/latency

 Security vulnerabilities [1-5]

[1] J. Cong et al., “Improving privacy and lifetime of PCM-based main memory,” DSN, 2010
[2] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main memory system with incremental encryption,” ISCA, 2011
[3] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories,” ASPLOS, 2015
[4] A. Awad et al., “Silent Shredder: Zero-cost shredding for secure non-volatile main memory controllers”, ASPLOS 2016
[5] S. Swami et al., “SECRET: Smartly EnCRypted energy EfficienT non-volatile memories”, DAC, 2016

Emerging Non-Volatile Memories

Challenges

 Memory encryption overheads
Write reduction schemes (e.g., DCW, FNW) are ineffective

 Cell flip rate

Write energy

510.07

0.5

0.082

0.75

0.094

0.875

0

0.2

0.4

0.6

0.8

1

no encr encr no encr encr no encr encr

SLC MLC TLC

C
e

ll
fl

ip
 r

at
e

1

6.8

1

8.6

1

8.9

0

2

4

6

8

10

no encr encr no encr encr no encr encr

SLC MLC TLC

N
o

rm
. w

ri
te

 e
n

e
rg

y

Challenges

 Memory authentication overheads
 HMAC

 High entropy High cell writes

Merkle Tree
 HMAC node fetch/update Additional memory accesses

1

1

1

0.65

5.3

5.8

0 1 2 3 4 5 6 7

IPC

NVM Energy

Cell Writes

Encrypted+Authenticated Encrypted

 Path ORAM overheads
 Access amplification

 High read latency: 10x (in DRAM), 40x (in SLC PCM)

 System performance degradation: 4x (DRAM), 10x (in SLC PCM)

 High write energy: 9x (in DRAM), 45x (SLC PCM)

Path ORAM

 Objective: Design secure MLC/TLC NVMs with
 High endurance

 Low write energy

 Smartly EnCRypted Energy EfficienT (SECRET) NVMs [1]
 Smart encryption: Reduces data re-encryption rate

 Unmodified and/or zero-words are not re-encrypted

SECRET

[1] S. Swami et al., “SECRET: Smartly EnCRypted energy EfficienT non-volatile memories”, DAC, 2016

 Objective: Design secure MLC/TLC NVMs with
 High endurance
 Low write energy

 Smartly EnCRypted Energy EfficienT (SECRET) NVMs
 Smart encryption: Reduces data re-encryption rate

 Unmodified and/or zero-words are not re-encrypted
 Energy masking: Reduces write energy of ciphertext

 XOR-based transformation from high to low energy state

 Impact: In comparison to state-of-the-art DEUCE [1]
 50% reduction in write energy
 20% improvement in lifetime

SECRET

ASSURE

 ASSURE: Authentication Scheme for SecURE Energy Efficient NVMs [1]
Multi-root Merkle Trees (MMTs)

 Two virtual Merkle Trees

 A smaller MT for “hot” memory regions and larger MT for “cold” regions

 Results:
 NVM energy reduction: 55%

 Lifetime improvement: 110%

 System performance: 10%

[1] J. Rakshit and K. Mohanram, “ASSURE: Authentication Scheme for SecURE Energy Efficient Non-Volatile Memories”, DAC, 2017

 Observation: Write buffering in memory controller not effective in ORAM
Memory controller receives the requests after address translation

 Allows read phase of LA write requests to pass through

 Practical write buffer overflows within 1-2 write phases

 Increasing write buffer capacity in memory controller: Ineffective
 4x/8x/16x increase in write buffer size: 5%/8%/12% decrease in read latency

ReadPRO

 ReadPRO: Read promotion scheduling in ORAM [1]
 Perform read prioritization higher up in the memory hierarchy at LLC-ORAM

controller interface
 Prioritization before ORAM address translation

 Decrease blocking effects from non-critical ORAM accesses of LA writes

ReadPRO

[1] J. Rakshit and K. Mohanram, “ReadPRO: Read Prioritization Scheduling in ORAM for Efficient Obfuscation in Main Memories”, ICCD 2018

 All blocks on a path are re-encrypted during a write phase

 Only a few blocks are updated; they require mandatory re-encryptions
 Exposes real blocks on a path; not secure

LEO

 LEO: Low Overhead Encryption ORAM for Non-Volatile Memories [1]
 Evaluate highest on a path for a given write phase (MRMAX)

 Enforce MRMAX block re-encryptions in all buckets

 For buckets with MRCOUNT < MRMAX

 Select (MRMAX - MRCOUNT) blocks randomly to be re-encrypted

LEO

[1] J. Rakshit and K. Mohanram, “LEO: Low Overhead Encryption ORAM for Non-Volatile Memories”, IEEE CAL, vol. 17, issue 2, 2018

THANK YOU
Q&A

PARL is hiring

