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 Cornerstones of secure platform: CIA [1]
 Confidentiality

 Integrity

 Availability 

Memory Security

Credit: http://www.cybersafesolutions.com/wp-content/uploads/2016/08/CSS_ThreatPolicies_CIAgraphic.jpg

[1] R. B. Lee, “Security basics for computer architects,” Synthesis Lectures on Computer Architecture, 2013



 Cornerstones of secure platform 

 Confidentiality
 Plaintext data should not be visible to adversary 

 Integrity

 Availability 
Credit: http://www.cybersafesolutions.com/wp-content/uploads/2016/08/CSS_ThreatPolicies_CIAgraphic.jpg

[1] J. Cong et al., “Improving privacy and lifetime of PCM-based main memory,” DSN, 2010
[2] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main memory system with incremental encryption,” ISCA, 2011 
[3] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories,” ASPLOS, 2015
[4] A. Awad et al., “Silent Shredder: Zero-cost shredding for secure non-volatile main memory controllers”, ASPLOS 2016
[5] S. Swami et al., “SECRET: Smartly EnCRypted energy EfficienT non-volatile memories”, DAC, 2016
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 Cornerstones of secure platform
 Confidentiality

 Integrity
 Adversary cannot perform undetected data tampering

Credit: http://www.cybersafesolutions.com/wp-content/uploads/2016/08/CSS_ThreatPolicies_CIAgraphic.jpg

[1] J. Rakshit and K.Mohanram, “ASSURE: Authentication Scheme for SecURE Energy Efficient Non-Volatile Memories”, DAC, 2017
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 Cornerstones of secure platform
 Confidentiality

 Integrity

 Availability 
 System (in this case, memory) should be able to serve 

requests without stalling. 

[1] M. Qureshi et al., “Enhancing lifetime and security of PCM-based main memory with start-gap wear leveling”, MICRO, 2009
[2] N.H. Seong et al., “Security Refresh: Prevent malicious wear-out and increase durability for phase-change memory with dynamically randomized address mapping”, ISCA, 2010
[3] F. Huang et al., “Security RBSG: Protecting phase change memory with security-level adjustable dynamic mapping”, PDPS, 2016.
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 Cornerstones of secure platform 
 Confidentiality

 Integrity 

 Availability 

 Threat model
 Trusted Computing Base (TCB) [1-4]

 Processor chip: Processor core, registers, caches, etc…

 Critical parts of OS Secure

[1] R. B. Lee, “Security basics for computer architects,” Synthesis Lectures on Computer Architecture, 2013
[2] G. E. Suh et al., “Efficient memory integrity verification and encryption for secure processors,” MICRO, 2003
[3] B. Rogers et al., “Using address independent seed encryption and Bonsai Merkle Trees to make secure processors OS-and performance-friendly”, MICRO, 2007
[4] A. D. Hilton et al., “PoisonIvy: Safe speculation for secure memory,” in MICRO, 2016
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 Cornerstones of secure platform 
 Confidentiality

 Integrity 

 Availability 

 Threat model
 Trusted Computing Base (TCB) [1-4]

 Processor chip: Processor core, registers, caches, etc…

 Critical parts of OS 

 Untrusted components
 Off-chip resources: Memory, buses, etc.

Secure

[1] R. B. Lee, “Security basics for computer architects,” Synthesis Lectures on Computer Architecture, 2013
[2] G. E. Suh et al., “Efficient memory integrity verification and encryption for secure processors,” MICRO, 2003
[3] B. Rogers et al., “Using address independent seed encryption and Bonsai Merkle Trees to make secure processors OS-and performance-friendly”, MICRO, 2007
[4] A. D. Hilton et al., “PoisonIvy: Safe speculation for secure memory,” in MICRO, 2016

Unsecure

Memory Security

Memory Bus
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Data Confidentiality

 Prevention of unauthorized leakage of plaintext data to adversary

 Attack vectors
 Bus snooping [1,2]

 Direct memory access (DMA)/Memory dump and scan [3]

 Cold boot attacks [4]

 Solution: Encryption of data stored in memory

[1] A. Huang, “Hacking the Xbox: An Introduction to Reverse Engineering” No Starch Press, 2003
[2] A. B. Huang, “The Trusted PC: Skin-Deep Security”, IEEE Computer, 2002
[3] A. Kumar, “Discovering Passwords in Memory”, http://www.infosecwriters.com/text_resources/, 2004
[4] J. A. Halderman, “Lest We Remember: Cold Boot Attacks on Encryption Keys”, USENIX Seurity Symposium, 2008



Data Confidentiality

 Direct data encryption
 One-way function (cipher like AES) + Global key

 Problem: Dictionary-based attacks

 Objective: Spatial and temporal uniqueness in encryption
 Spatial: Ciphertexts of the same plaintext data at different addresses is unique

 Temporal: Ciphertexts of the same plaintext data at same address is unique across  
different writes

 Solution: Counter-mode encryption (approved by NIST) 

[1] A. Huang, “Hacking the Xbox: An Introduction to Reverse Engineering” No Starch Press, 2003
[2] A. B. Huang, “The Trusted PC: Skin-Deep Security”, IEEE Computer, 2002
[3] A. Kumar, “Discovering Passwords in Memory”, http://www.infosecwriters.com/text_resources/, 2004
[4] J. A. Halderman, “Lest We Remember: Cold Boot Attacks on Encryption Keys”, USENIX Seurity Symposium, 2008



Data Confidentiality

 Counter mode encryption
 One time pad (OTP): Random and unique

 Secret key (randomness)

 Cache line address (spatial uniqueness)

 Counter per cache line (temporal uniqueness)

[1] J. Yang et al., “Improving memory encryption performance in secure processors”, IEEE Trans. Computers, 2005
[2] W. Enck et al.,“Defending against attacks on main memory persistence”, ACSAC, 2008
[3] J. Kong and and H. Zhou, “Improving privacy and lifetime of PCM-based main  memory”, DSN, 2010
[4] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories”, ASPLOS, 2015

Secure Processor
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Line 
Address

Counter
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cipher
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Memory



Data Confidentiality

 Counter mode encryption
 Low decryption latency

 OTP: Requires counter, address, secret key
 Address + secret key available on processor

 Counter stored along with data in memory

 Needs to be on the processor 

 Counter cache: Caches counters on processor
Memory

[1] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories”, ASPLOS, 2015

Figure credit: [1]
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 Prevention of undetected, unauthorized tampering of data by adversary

Data Integrity



 Memory data integrity: Attacks

 Spoofing

Data Integrity: Attacks

A B C D



 Memory data integrity: Attacks 

 Spoofing

Attacker changes data at 
a particular memory location

A X C D

A B C D

Data Integrity: Attacks



 Memory data integrity: Attacks
 Spoofing

 Splicing

A D C B

Attacker swaps data 
between 2 memory locations

A B C D

Data Integrity: Attacks



 Memory data integrity: Attacks
 Spoofing

 Splicing

 Replay
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e
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Attacker replays data; 
replaces new data with older versions

A B C D

Data Integrity: Attacks



 Memory data integrity: Authentication
 HMAC: Hashed Message Authentication Code

 Keyed cryptographic hash signature

 Stored along with data in memory 

 Prevents spoofing, prone to splicing and replay

Data
DH DH DH DH

DH = HMACK (D)

Secret key

Memory Authentication



 Memory data integrity: Authentication
Merkle Tree

Data

DH DH DH DH

DH DH

DHROOT

Secure Processor

Merkle Tree (MT): Data structure
constructed by recursive hashing,
culminates in a root stored on
secure processor.
• Secure root cannot be spoofed,

spliced, or replayed, hence data
is tamper-proof.

Memory Authentication



 Memory data integrity
 Bonsai Merkle Tree (BMT) [1]

 Authentication uses encryption counters

 Protecting counters ensures trusted decryption

Encrypted Data Encryption Counters

DH DH DH DH CH CH CH CH

CH CH

CHROOT

Secure Processor

[1] B. Rogers et al., “Using address independent seed encryption and Bonsai Merkle Trees to make secure processors OS- and performance-friendly”, MICRO, 2007

DH

CH

= HMAC (Encrypted data || Address || Ctr)

= HMAC (Ctr) 

Memory Authentication

Concatenation



 BMT: Operating details
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Nodes traversed for authentication

Memory Authentication
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Revisiting Confidentiality

 Confidentiality
 Ensured by data encryption

 Security assumption: Secret key is secure 
 Does not hold in presence of side-channels 

 Traditional memory request for encrypted memory
 Data  encrypted

 Address and commands  unencrypted



Revisiting Confidentiality

 Illustration: Security vulnerabilities of exposing access patterns
 A section of exponentiation function in public-key cryptosystems [1]

 y = xk; where x = input, k = secret key

 Following the access pattern, the attacker can decipher the secret key
 No knowledge of addresses of ‘r’ and ‘s’, it gets  2 possible options, the key and it’s complement

for i=0 to N-1{
if (secret_key[i] == 0)

r = <computation1>
else

s = <computation2> }
Address of ‘r’: 0x00
Address of ‘s’: 0x20

[1] T. John et al., “Connecting the dots: Privacy leakage via write-access patterns to the main memory,” HOST, 2017

0x00, 0x20, 0x20, 0x00, …



Revisiting Confidentiality

 Plaintext address presents security vulnerabilities  
 Access patterns can reveal 

 Encryption keys, eliminating the security guarantees of encryption [1,2] 

 Control flow graph for the program, leading to lP leakage [3]

 Require access pattern obfuscation for confidentiality

[1] M. S. Islam et al., “Access pattern disclosure on searchable encryption: Ramification, attack and mitigation,” NDSS, 2012
[2] T. John et al., “Connecting the dots: Privacy leakage via write-access patterns to the main memory,” HOST, 2017
[3] X. Zhuang et al., “HIDE: An infrastructure for efficiently protecting information leakage on the address bus,” ASPLOS, 2004



 Objective: Memory access pattern obfuscation [1]
 No information leakage about 

 Address being accessed

 Plaintext data at the accessed address 

 Type of memory access: Read or write

 Linkability: Whether same address is being accessed

Access Pattern Obfuscation

[1] E. Stefanov et al., “Path ORAM: An Extremely Simple Oblivious RAM Protocol”, CCS, 2013



Oblivious RAM

[1] R.Ostrovsky et al., “Private information storage”, STOC, 1997
[2] E. Stefanov et al., “Towards practical Oblivious RAM”, NDSS, 2012
[3] J. Dutrich et al., “Burst ORAM: Minimizing ORAM response times for bursty access patterns”, USENIX Security, 2014
[4] E. Shi, et al., “Oblivious RAM with O((log n)3) worst-case cost”, ASIACRYPT, 2011
[5] E. Stefanov et al., “Path ORAM: An Extremely Simple Oblivious RAM Protocol”, CCS, 2013
[6] R. Wang et al., “Cooperative Path-ORAM for effective memory bandwidth sharing in server settings,” HPCA, 2017.
[7] R. Wang et al., , “D-ORAM: Path-ORAM delegation for low execution interference on cloud servers with untrusted memory,”, HPCA 2018.

 Oblivious RAM algorithms
Widely used to achieve complete access pattern obfuscation

 2 major categories
 Hierarchical ORAM [1-3]

Memory arranged as a tiered hierarchy

 Suitable for large client storage

 Tree based ORAM [4-7]
Memory arranged as a binary/N-ary tree

 Suitable for small client storage

 Path ORAM: simplest and most efficient



 Path ORAM comprised of
 Untrusted external memory

 Trusted ORAM controller 

 Address nomenclature
 Virtual (Program) Logical  ORAM 

Path ORAM

Page Table ORAM controller



 External memory organized as a binary tree 
 Each logical address (LA) data block is randomly mapped to a leaf (LeafID)

 The unique path from the root at any leaf x is called path-x

 Each node is termed a bucket
 Each bucket can hold Z encrypted data/dummy blocks (cache lines)

Path ORAM

0 1 2 3 4 5 6 7

Z=4

DIMM

Processor chipTrusted

Untrusted



 ORAM controller: Frontend
 LA queue: Buffers memory requests from LLC misses

 PosMap: Stores random mapping to LA to leaves (LeafID)

 Address Logic: Generates ORAM addresses for nodes on a given path
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 ORAM controller: Frontend
 LA queue: Buffers memory requests from LLC misses

 PosMap: Stores random mapping to LA to leaves (LeafID)

 Address Logic: Generates ORAM addresses for nodes on a given path

Path ORAM

LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req. 

(Data, Leaf Label, LA)

Return data 
to LLC

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)

O
R

A
M

 
C

o
n

tr
o

lle
r

Processor 
chip

DIMM

LA Queue

ORAM 
tree

Trusted

Untrusted



 ORAM controller: Frontend
 LA queue: Buffers memory requests from LLC misses

 PosMap: Stores random mapping to LA to leaves (LeafID)

 Address Logic: Generates ORAM addresses for nodes on a given path
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 ORAM controller: Backend
 Encryption/decryption units: Encrypts/decrypts data block 

 Stash: Stores decrypted data blocks fetched from ORAM

Path ORAM
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 ORAM controller: Backend
 Encryption/decryption units: Encrypts/decrypts data block 

 Stash: Stores decrypted data blocks fetched from ORAM
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LA Leaf
1 6
2 4

Address Logic
N 1

Stash

LLC Req. 

(Data, Leaf Label, LA)

Return data 
to LLC

Encr./Decr. UnitsP
o

sM
ap

Memory Controller (in TCB)

O
R

A
M

 
C

o
n

tr
o

lle
r

Processor 
chip

DIMM

LA Queue

ORAM 
tree

Trusted

Untrusted



 The main invariant by construction
 A data block, mapped to a leaf x is either in any bucket on the path-x or in the stash

 On an LLC miss
 The ORAM controller is queried with the accessORAM (addr, op, data) interface

 The ORAM controller performs an ORAM access
 Read phase

Write phase

Path ORAM
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Path ORAM
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 Security
 Address: Randomized mapping secret from adversary

 Plaintext data: Encrypted 

 Type of memory access: Both read and write phase for each ORAM access

 Linkability: Remapping after every access, path access

 New ORAM architectures
Must preserve baseline Path ORAM guarantees

Must not leak additional useful information

Path ORAM
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Emerging Non-Volatile Memories

 Main memory requirements and DRAM drawbacks
 Capacity: DRAM density hard to scale [1]

 Energy: High DRAM refresh power due to leakage [2-8]

 PCM and RRAM: Emerging NVMs [2-8] 
 Better scalability  

 High data density  (MLC – 2 bits/cell, TLC – 3 bits/cell)  

 Data persistence – no refresh power  

[1] International Technology Roadmap for Semiconductors, 2011
[2] M.K.Qureshi et al., “Scalable high performance main memory system using phase-change memory technology”, ISCA, 2009
[3] B. C. Lee et al., “Phase change technology and the future of main memory,” IEEE Micro, 2010 
[4] A. Ferreira et al., “Increasing PCM main memory lifetime,” DATE, 2010
[5] S. Sheu et al., “Fast-write resistive RAM (RRAM) for embedded applications,” IEEE Design and Test of Computers, 2011
[6] S. Bock et al., “Analyzing the impact of useless write-backs on the endurance and energy consumption of PCM main memory,” ISPASS, 2011
[7] L. Jiang et al., “Improving write operations in MLC phase change memory,” HPCA, 2012
[8] C. Xu et al., “Understanding the trade-offs in multi-level cell ReRAM memory design,” DAC, 2013



 Main memory requirements and DRAM drawbacks
 Capacity: DRAM density hard to scale [1]

 Energy: High DRAM refresh power due to leakage [2-8]

 PCM and RRAM: Emerging NVMs [2-8] 
 Better scalability  

 High data density  (MLC – 2 bits/cell, TLC – 3 bits/cell)  

 Data persistence – no refresh power  

 Low endurance  

 High write energy/latency  
[1] International Technology Roadmap for Semiconductors, 2011
[2] M.K.Qureshi et al., “Scalable high performance main memory system using phase-change memory technology”, ISCA, 2009
[3] B. C. Lee et al., “Phase change technology and the future of main memory,” IEEE Micro, 2010 
[4] A. Ferreira et al., “Increasing PCM main memory lifetime,” DATE, 2010
[5] S. Sheu et al., “Fast-write resistive RAM (RRAM) for embedded applications,” IEEE Design and Test of Computers, 2011
[6] S. Bock et al., “Analyzing the impact of useless write-backs on the endurance and energy consumption of PCM main memory,” ISPASS, 2011
[7] L. Jiang et al., “Improving write operations in MLC phase change memory,” HPCA, 2012
[8] C. Xu et al., “Understanding the trade-offs in multi-level cell ReRAM memory design,” DAC, 2013

Emerging Non-Volatile Memories



 PCM and RRAM: Emerging NVMs 
 Better scalability  

 High data density  (MLC – 2 bits/cell, TLC – 3 bits/cell)  

 Data persistence – no refresh power  

 Low endurance  

 High write energy/latency  

[1] B. Young et al., “A low power phase change random access memory using a data-comparison write scheme,” ISCS, 2007
[2] S. Cho et al., “Flip-N-Write: A simple deterministic technique to improve PRAM write performance, energy and endurance,” MICRO, 2009
[3] P. Palangappa et al., “Compex: Compression-expansion coding for energy, latency, and lifetime improvements in MLC/TLC NVM”, HPCA, 2016
[4] M. Qureshi et al., “Enhancing lifetime and security of PCM-based main memory with Start-Gap wear leveling,” MICRO, 2009
[5] S. Schechter et al., “Use ECP, not ECC, for hard failures in resistive memories”, ISCA, 2010
[6] R. Wang et al., “SD-PCM: Constructing reliable super dense Phase Change Memory under write disturbance”, ASPLOS 2015
[7] L. Jiang et al., “Improving write operations in MLC phase change memory”, HPCA, 2012
[8] X. Zhang et al., “TriState-SET: Proactive SET for improved performance of MLC phase change memories”, ICCD, 2015
[9] J.Li et al., “Write-once-memory-code phase change memory”, DATE, 2014

Architecture based solutions
1. Cell flip reduction [1-3]
2. Wear levelling and error-correction [4-6]
3. Data mapping  [7-9]

Emerging Non-Volatile Memories



 PCM and RRAM: Emerging NVMs 
 Better scalability  

 High data density  (MLC – 2 bits/cell, TLC – 3 bits/cell)  

 Data persistence – no refresh power   

 Low endurance  

 High write energy/latency  

 Security vulnerabilities [1-5]

[1] J. Cong et al., “Improving privacy and lifetime of PCM-based main memory,” DSN, 2010
[2] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main memory system with incremental encryption,” ISCA, 2011 
[3] V. Young et al., “DEUCE: Write-efficient encryption for non-volatile memories,” ASPLOS, 2015
[4] A. Awad et al., “Silent Shredder: Zero-cost shredding for secure non-volatile main memory controllers”, ASPLOS 2016
[5] S. Swami et al., “SECRET: Smartly EnCRypted energy EfficienT non-volatile memories”, DAC, 2016

Emerging Non-Volatile Memories



Challenges

 Memory encryption overheads 
Write reduction schemes (e.g., DCW, FNW) are ineffective 

 Cell flip rate
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Challenges

 Memory authentication overheads
 HMAC

 High entropy  High cell writes

Merkle Tree
 HMAC node fetch/update  Additional memory accesses 
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 Path ORAM overheads
 Access amplification

 High read latency: 10x (in DRAM), 40x (in SLC PCM)

 System performance degradation: 4x (DRAM), 10x (in SLC PCM)

 High write energy: 9x (in DRAM), 45x (SLC PCM)

Path ORAM



 Objective: Design secure MLC/TLC NVMs with
 High endurance

 Low write energy

 Smartly EnCRypted Energy EfficienT (SECRET) NVMs [1] 
 Smart encryption: Reduces data re-encryption rate

 Unmodified and/or zero-words are not re-encrypted

SECRET

[1] S. Swami et al., “SECRET: Smartly EnCRypted energy EfficienT non-volatile memories”, DAC, 2016



 Objective: Design secure MLC/TLC NVMs with
 High endurance
 Low write energy

 Smartly EnCRypted Energy EfficienT (SECRET) NVMs  
 Smart encryption: Reduces data re-encryption rate

 Unmodified and/or zero-words are not re-encrypted
 Energy masking: Reduces write energy of ciphertext

 XOR-based transformation from high to low energy state

 Impact: In comparison to state-of-the-art DEUCE [1]
 50% reduction in write energy 
 20% improvement in lifetime

SECRET



ASSURE

 ASSURE: Authentication Scheme for SecURE Energy Efficient NVMs [1]
Multi-root Merkle Trees (MMTs)

 Two virtual Merkle Trees 

 A smaller MT for “hot” memory regions and larger MT for “cold” regions

 Results:
 NVM energy reduction: 55%

 Lifetime improvement: 110%

 System performance: 10%

[1] J. Rakshit and K. Mohanram, “ASSURE: Authentication Scheme for SecURE Energy Efficient Non-Volatile Memories”, DAC, 2017



 Observation: Write buffering in memory controller not effective in ORAM
Memory controller receives the requests after address translation

 Allows read phase of LA write requests to pass through

 Practical write buffer overflows within 1-2 write phases

 Increasing write buffer capacity in memory controller: Ineffective
 4x/8x/16x increase in write buffer size: 5%/8%/12% decrease in read latency

ReadPRO



 ReadPRO: Read promotion scheduling in ORAM [1]
 Perform read prioritization higher up in the memory hierarchy at LLC-ORAM 

controller interface
 Prioritization before ORAM address translation 

 Decrease blocking effects from non-critical ORAM accesses of LA writes

ReadPRO

[1] J. Rakshit and K. Mohanram, “ReadPRO: Read Prioritization Scheduling in ORAM for Efficient Obfuscation in Main Memories”, ICCD 2018



 All blocks on a path are re-encrypted during a write phase

 Only a few blocks are updated; they require mandatory re-encryptions
 Exposes real blocks on a path; not secure

LEO



 LEO: Low Overhead Encryption ORAM for Non-Volatile Memories [1]
 Evaluate highest on a path for a given write phase (MRMAX)

 Enforce MRMAX  block re-encryptions in all buckets

 For buckets with MRCOUNT  < MRMAX

 Select (MRMAX - MRCOUNT) blocks randomly to be re-encrypted

LEO

[1] J. Rakshit and K. Mohanram, “LEO: Low Overhead Encryption ORAM for Non-Volatile Memories”, IEEE CAL, vol. 17, issue 2, 2018
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