
Hardware Prefetchers and Security:
A Two-Edged Sword

Biswabandan Panda

CARS@CSE-IITK
Indian Institute of Technology Kanpur

MAST 2019
October 11th, 2019

2

Hardware Prefetchers ?

Pre-fetchers: Fetch Before Time (event) to save time!

3

Hardware Prefetchers-101

$

Prefetcher

X+2

X+3

C
o

re X+3

❶

❷

❸

❹

❺
HIT

X+1

X

4

Security? Microarchitecture Attacks

Security? Microarchitecture Attacks

Spy Victim

Let’s
play

Oh Yes!!

5

Side-channel attacks

Covert-channel attacks

Current Multicore Systems

6

C
o

re

D
R

A
M

C

o
n

tr
.

C
o

re

C
o

re
C

o
re

C
o

re
C

o
re

C
o

re
C

o
re

L3

L1 L2

P
F

P
F

Two Edged Sword

7

Hardware
Prefetching:

(Mitigating cross-
core timing
channels)

Back-invalidation
Triggered Prefetching
[PACT ‘19]

Whispering Streamers
[HASP@ISCA‘19,
Poster@MICRO ’19]

Hardware
Prefetching:

(Creating a cross-
thread timing

channel)

8

Fooling the Sense of a Cross-Core Eviction based
Attacker by Prefetching the Common Sense

[Biswa, PACT ‘19]

9

Fooling the Sense of a Cross-Core Eviction based
Attacker by Prefetching the Common Sense

[Biswa, PACT ‘19]

10

Microarchitecture Attacks at the LLC

Attacks at the LLC exploit timing channels:
LLC miss > LLC hit

Flush + Reload Evict + Reload Prime + Probe

clflush Eviction based attacks

Focus of this talk

11

Information Leakage: An Example

Modular exponentiation, be mod n

Exponent e is used for
decryption

Attacker tries to get the e

ei = 0, Square Reduce (SR)
ei = 1, SRMR

multiply

square reduce

12

Information Leakage: An Example [Usenix Security ‘14]

13

Threat Model

Knowing the victim has accessed a cache set
can be considered as a successful attack

14

Fooling the Sense of a Cross-Core
Eviction based Attacker by Prefetching

the Common Sense

15

Prime + Probe at the LLC

LLC

Step 0: Spy fills the entire
shared cache (a few sets)

16

Prime + Probe at the LLC

LLC

Step 1: Victim evicts cache
blocks while running

Step 0: Spy fills the entire
shared cache (a few sets)

17

Prime + Probe at the LLC

Voila

Step 1: Victim evicts cache
blocks while running

Step 2: Spy probes the cache
set

If misses then victim
has accessed the set

LLC

Step 0: Spy fills the entire
shared cache (a few sets)

18

Notion of Time Gap

WAIT

PRIME

PROBE

VICTIM
ACCESS

~5K to 10K cycles

19

Prior Mitigation Techniques

Cache Partitioning [TACO ‘12, MICRO’18]

Fuzzy Timers [ISCA ‘12]

Random Permutation Cache [ISCA ‘07]

Secure Cache Hierarchy [DAC ‘17]

Secure Cache Replacement Policy [ISCA ‘17]

Depends on ISA changes, OS support, and runtime support

Our goal: Minimal changes to hardware only ☺

20

Fooling the Sense of a Cross-Core
Eviction based Attacker by Prefetching

the Common Sense

21

Fooling the Sense

Fooling the sense of an attacker:
time(LLC hit) = time(LLC miss)

22

How?

Hardware Prefetching

But, prefetch what?

23

Our Thesis

(2) Inclusion Victims (back-invalidations) help the attackers

(3) Cross-core back-invalidations are rare and benign

(1) All the eviction attacks target inclusive LLCs

24

Inclusive Caches

B
ack

In
val

L1/L2

LLC

victim

fill

fill

Core request

memory

evict

25

Our Thesis

(2) Inclusion Victims (back-invalidations) help the attackers

(3) Cross-core back-invalidations are rare and benign

(1) All the eviction attacks target inclusive LLCs

26

Let’s Revisit the Eviction Attacks

L1/L2

LLC

27

Let’s Revisit the Eviction Attacks

L1/L2

LLC

Miss
Cross-core back-invalidation

28

Let’s Revisit the Eviction Attacks

L1/L2

LLC

Miss

Miss

Attacker knows whether victim
has accessed a set or not

29

Our Thesis

(2) Inclusion Victims (back-invalidations) help the attackers

(3) Cross-core back-invalidations are rare and benign

(1) All the eviction attacks target inclusive LLCs

30

Let’s Quantify it for Benign Applications

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

ca
lc

u
li

x

ga
m

es
s

gc
c

G
em

sF
D

T
D

go
b

m
k

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

lb
m

le
sl

ie
3

d

li
b

q
u

an
tu

m

m
cf

m
il

c

n
am

d

o
m

n
et

p
p

p
er

lb
en

ch

p
o

v
ra

y

sj
en

g

so
p

le
x

sp
h

in
x3

to
n

to

w
rf

xa
la

n
cb

m
k

ze
u

sm
p

SP
E

C
-4

/8
/1

6
-c

o
re

P
A

R
SE

C
-8

/1
6

-c
o

re

C
lo

u
d

su
it

e-
4

-c
o

re

A
v

er
ag

e

B
ac

k
-i

n
va

li
d

at
io

n
 h

it
s

at
 t

h
e

L
2

SHiP++ HAWKEYE

SPEC 4-core: 31465 mixes, SPEC 8-core: 31464/2 (15732) mixes, SPEC 16-core: 15732/2 (7866) mixes
One 8/16-core mix is created by mixing two/four 4-core mixes.

A good indicator of an attacker ☺

31

Fooling the Sense of a Cross-Core
Eviction based Attacker by Prefetching

the Common Sense

32

Our Proposal: 10K Feet View

Fooling the Sense of the Attacker by Prefetching Common Sense

Fooling the sense of an attacker:
time(LLC hit) = time(LLC miss)

Common sense:
Prefetch the back-invalidation hits (before attacker probes)
Back-invalidation Triggered Prefetcher (BITP)

33

Why not Prevent Cross-Core Eviction?

SHARP [ISCA ‘17] does the same,
affects the replacement priority chain

Significant performance degradation with state-of-the-art
replacement policies and many issues [WOOT@USENIX ‘19]

34

Our Proposal at the Per-core L2 Level

L2

LLC SLICE

BACK-INV + ADDRESS

①

BACK-INV: BACK-INVALIDATION COMMAND

35

Our Proposal at the Per-core L2 Level

L2

LLC SLICE

BITP

IF ((L2 HIT) AND (CMD=BACK-INV)) THEN

BACK-INV + ADDRESS

①

②BLOCK ADDRESS OF BACK-INVALIDATION HIT

CMD: COMMAND
BACK-INV: BACK-INVALIDATION COMMAND

36

Our Proposal at the Per-core L2 Level

L2

LLC SLICE

BITP

IF ((L2 HIT) AND (CMD=BACK-INV)) THEN

BACK-INV + ADDRESS

DRAM REQUEST/RESPONSE,
BLOCK ALLOCATED IN LLC AS PER LLC-FILL POLICY

BLOCK ALLOCATED

①

②

③

④

⑤

MSHRs

ON-CHIP INTERCONNECT

BLOCK ADDRESS OF BACK-INVALIDATION HIT

CMD: COMMAND
BACK-INV: BACK-INVALIDATION COMMAND

37

Our Proposal at the Per-core L2 Level

L2

LLC SLICE

BITP

IF ((L2 HIT) AND (CMD=BACK-INV)) THEN

BACK-INV + ADDRESS

DRAM REQUEST/RESPONSE,
BLOCK ALLOCATED IN LLC AS PER LLC-FILL POLICY

BLOCK ALLOCATED

RESPONSE

①

②

③

④

⑤

⑥

⑦

MSHRsMSHRs

ON-CHIP INTERCONNECT

FILL
QUEUE

BLOCK ADDRESS OF BACK-INVALIDATION HIT

CMD: COMMAND
BACK-INV: BACK-INVALIDATION COMMAND

38

BITP

BITP works independent of the core/thread id

Thread migration does not affect BITP

Works irrespective of LLC replacement policy

Does not affect the priority chain

No support from OS/compiler/runtime system/ISA ☺

39

A quick security evaluation:
BITP on Poppler (a PDF rendering library)

40

0

1

0 50 100 150 200 250 300 350 400 450 500

All Functions

(a)Baseline

(b) BITP

(a)Baseline

(a)Baseline

(a)Baseline

0

1

0 50 100 150 200 250 300 350 400 450 500

ShowSpaceText

0

1

0 50 100 150 200 250 300 350 400 450 500

TextMoveSet

0

1

0 50 100 150 200 250 300 350 400 450 500

SetFont

0

1

0 50 100 150 200 250 300 350 400 450 500

TextNextLine

41

No More Inclusive LLCs ☺ So BITP

Yes, recent machines have employed non-inclusive LLCs

However, Coherence Directory is inclusive even if the LLC is
non-inclusive [S&P ‘19]: Intel and AMD machines, So BITP ☺

42

Effect on System Performance

0.98
0.99

1
1.01
1.02
1.03
1.04 SHiP+BITP over SHiP HAWKEYE+BITP over HAWKEYE

Marginal performance gain: win-win situation ☺

43

Key Takeaways

Prefetcher can fool a cross-core LLC attacker

Prefetching on Back-invalidation hits

~zero hardware overhead and no performance loss

44

Key Takeaways

Hardware
Prefetching:

(Mitigating cross-
core timing
channels)

Back-invalidation
Triggered Prefetching
[PACT ‘19]

Whispering Streamers
[HASP@ISCA ‘19,
Poster@MICRO ’19]

Hardware
Prefetching:

(Creating a cross-
thread timing

channel)

Whispering Streamers:
[Adi, Biswa, and Prakhar

HASP@ISCA ‘19 and
Poster@MICRO ’19]

46

Streamers: What We Know?

1st

miss
2nd

miss
3rd

miss

100

100 102 104

102 104 Trained!

miss
sequence 503 504 501 499

503 504 501 Fail!504 501 499 Trained!

1st

miss
2nd

miss
3rd

miss

prefetch degree

Stream direction
memory

access

Monitored
region

prefetch distance

start
addr

end
addr

47

Streamers: Our Hunch

Streamers are shared between hyper threads

A cross-thread covert-channel in an SMT core

L2
$

Streamer

C
o

re
T0

T1

What We Do not Know? Many

Other Prefetchers in Intel Machines

● L2 Adjacent Line

● L2 Stream

● L1 IP-based Stride

● L1 Next-Line

1 1 1 0

MSR: 0x1a4

49

Disabled

Our Goal: What Are We Trying to Answer?

50

Is the Stream Prefetcher shared b/w SMT threads?

What triggers the stream prefetcher with cross-
threads?

Does Streamer Trigger Multiple Prefetching?

Can the Streamer leak?

Our Setup and Assumptions

51

All prefetchers except the streamer disabled

Two SMT threads on an isolated core accessing
4KB OS pages

Intel Kaby Lake i5, 4 cores (SMT), 64KB L1, 256KB L2,
1.5MB L3/core

Experiment 1: Is the Streamer Shared?

52

Insight: Stream table entry is shared b/w SMT threads

0

20000

40000

60000

80000

100000

`+ve/-ve` `+ve/+ve` `-ve/+ve` `-ve/-ve`

Ex
ec

u
ti

o
n

 t
im

e
in

 c
yc

le
s

Access direction

Thread 1 Thread 2

Accesses made to OS pages covering a large array of 4MB

Experiment 2: How does the Streamer get Triggered?

53

1 2 3 4 5 6 7 8

T1

Thread1 accesses line1

9 10 11

Experiment 2: How does the Streamer get Triggered?

54

1 2 3 4 5 6 7 8

T1

T2

Trigger : Thread2 accesses line2

9 10 11

Experiment 2: How does the Streamer get Triggered?

55

Insight: Two misses (even accesses)
can trigger the streamer, prefetch degree varies from four to eight

1 2 3 4 5 6 7 8

T1

T2

9 10 11

Prefetched Lines

Experiment 3: Does Streamer Trigger Multiple
Prefetching?

56

1 2 3 4 5 6 7 8 19 20 21 22 23

T1

Thread1 accesses line1

57

Trigger : Thread2 accesses line20

Experiment 3: Does Streamer Trigger Multiple
Prefetching?

1 2 3 4 5 6 7 8 19 20 21 22 23

T1 T2

58

Insight: Prefetching happens at the trigger and the
previous access

Experiment 3: Does Streamer Trigger Multiple
Prefetching?

1 2 3 4 5 6 7 8 19 20 21 22 23

T1 T2

Prefetched Lines Prefetched Lines

So Where Are We?

59

Is the Stream Prefetcher shared b/w SMT threads?

What triggers the stream prefetcher?

Does Streamer Trigger Multiple Prefetching?

Shared b/w SMT threads on the same core

Two accesses can trigger the streamer

Prefetching happens at trigger and the previous
access

Can the Streamer leak?

Flush+Reload For Covert Channel: 101

60

Step 1: Sender does not flush/flushes
cache sets while running

L2

Step 0: Sender and receiver agree on
a few cache sets

Step 2: Receiver reloads the cache
sets

Voila

Low latency: 1,
high latency: 0

SENDER RECEIVER

Our Proposal: Flush+Prefetch+Reload

61

Hit means sender sent bit 1,
Miss bit 0

1 2 3 L2

Step 0: Sender flushes all cache
lines in a page

Voila

Step 2: Receiver accesses line4 of
the same page

RECEIVERSENDER

Step 1: Sender accesses line1,
line2, and line3 lines of the page

Our Proposal: Flush+Prefetch+Reload

62

1 2 3 L2

Voila

Bandwidth 13.49 KB/s

Accuracy 91.3%

RECEIVERSENDER

So Where Are We?

63

Shared b/w SMT threads on the same core

Two accesses can trigger the streamer

Prefetching happens at trigger and the previous
access

Can the Streamer leak?Yes! as a covert channel and possibly as a side channel

Takeaways

64

Prefetchers can mitigate eviction based attacks

Existing prefetchers can be leaky too

What next: Side channel attack using Streamer, stay
tuned, may be MAST ‘20 ☺

65

“It takes two to speak the truth - one to speak and
another to hear” - Henry David Thoreau

Thank You

66

Wanna Join Us (CARS@CSE-IITK)?

This could be you

