Hardware Prefetchers and Security:
A Two-Edged Sword o

Biswabandan Panda
CARS@CSE-IITK

Indian Institute of Technology Kanpur

MAST 2019
October 11th 2019

Hardware Prefetchers ?

Pre-fetchers: Fetch Before Time (event) to save time!

Hardware Prefetchers-101

X+3

I
X+2

X+1
X

X+3 |

[
Prefetcher

Security? Microarchitecture Attacks

Security? Microarchitecture Attacks

Current Multicore Systems

Two Edged Sword

Hardware
Prefetching:

Hardware
Prefetching:

(Mitigating cross-
core timing
channels)

(Creating a cross-
thread timing
channel)

@IS | A
Back-invalidation Whispering Streamers
Triggered Prefetching [HASP@ISCA19,

[PACT ‘19] Poster@MICRO '19
= = K - | /

Fooling the Sense of a Cross-Core Eviction based

Attacker by Prefetching the Common Sense
[Biswa, PACT ‘19]

Fooling the Sense of a Cross-Core Eviction based

Attacker by Prefetching the Common Sense
[Biswa, PACT ‘19]

Microarchitecture Attacks at the LLC

4 ™
Attacks at the LLC exploit timing channels:

LLC miss > LLC hit

- J

{Flush + Reload} { Evict + Reload J {Prime + Probe

{clﬂush} { Eviction based attacks J

{ Focus of this talk

10

Information Leakage: An Example

x —1 {Modular exponentiation, b°mod n }

for i <|e|-1 downto 0 dO[Exponent e is used for J
X <;x2 mod n decryption

e

~ reduce

Y
square if (ei — 1) then// [ei =0, Square Reduce (SR]}
x = xb modn e;=1, SRMR

endif

done
return x Attacker tries to get the e }

multiply

11

Information Leakage: An Example [Usenix Security ‘14]

Probe Time (cycles)

500

400

300

200

100

0

______ Threshold

POO® ¢ 40009 ° 490900 crhirAc o

S&uare
Multiply
Modulo

@
A

$44 0004444000424 00 000"004444400) Lag000 00000.44

S r

S

r S r

M r

r S r

12

Threat Model

_—

/
Knowing the victim has accessed a cache set

can be considered as a successful attack
N

\

13

Fooling the Sense of a Cross-Core
Eviction based Attacker by Prefetching
the Common Sense

14

Prime + Probe at the LLC

® CEOELEEL DL BT LT 1 ! UUUUNUNRNUNN g VURRRNRRNRUNRU NNV RERH RN RRN R g

L T e N BN N Rl e

Step 0: Spy fills the entire
shared cache (a few sets)

15

Prime + Probe at the LLC

LT LT Ul N g

L T e N BN N Rl e

a Uil T T
® " i

g
Step 0: Spy fills the entire
\shared cache (a few sets)

>
Step 1: Victim evicts cache
\blocks while running

16

Prime + Probe at the LLC

g
Step 0: Spy fills the entire
\shared cache (a few sets)

>
Step 1: Victim evicts cache
\blocks while running

Step 2: Spy probes the cache

/

e e e SR If misses then victim
e e e T has accessed the set

Py
ol
® o
=t

17

Notion of Time Gap

e
p s

]

_____ @ B WAIT
&) PRIME
*]

@ ___ PROBE
)] VICTIM

--- ACCESS
)

< ~5K to 10K cycles | J

18

Prior Mitigation Techniques

Cache Partitioning [TACO ‘12, MICRO’18]

‘Fuzzy Timers [ISCA ‘12]

Random Permutation Cache [ISCA ‘07] }

:Secure Cache Hierarchy [DAC ‘17] J

iSecure Cache Replacement Policy [ISCA ‘17] }

iDepends on ISA changes, OS support, and runtime support

iOurgoal: Minimal changes to hardware only ©

19

YOO

(&)

Fooling the Sense of a Cross-Core
Eviction based Attacker by Prefetching
the Common Sense

20

Fooling the Sense

P
Fooling the sense of an attacker:

\time[LLC hit) = time(LLC miss)

21

How?

LHardware Prefetching}

{But, prefetch what? }

22

Our Thesis

[(1) All the eviction attacks target inclusive LLCs }

E(Z) Inclusion Victims (back-invalidations) help the attackers }

{(3) Cross-core back-invalidations are rare and benign }

23

Inclusive Caches

Core request

memory

L1/L2

victim

evict

[eaupoeq

24

Our Thesis

[(1) All the eviction attacks target inclusive LLCs }

{(2) Inclusion Victims (back-invalidations) help the attackers }

{(3) Cross-core back-invalidations are rare and benign }

25

Let’s Revisit the Eviction Attacks

26

Let’s Revisit the Eviction Attacks

Cross-core back-invalidation

Miss
LLC

27

Let’s Revisit the Eviction Attacks

Attacker knows whether victim
has accessed a set or not

|

Miss

28

Our Thesis

[(1) All the eviction attacks target inclusive LLCs }

{(2) Inclusion Victims (back-invalidations) help the attackers }

{(3) Cross-core back-invalidations are rare and benign }

29

Let’s Quantify it for Benign Applications

0.08

0.07 O SHiP++ B HAWKEYE

Back-invalidation hits at the L2

0.06

0.05

0.04

0.03

0.02

0.01

0 |

= S
= S

T ——
MK — '
SN Eee——

— v v Y= &)
58NS K8 X 0P ERET2T RS RYPERS 0 g o
a =R 5 = A S+ £ L = S 58 2 & = S 8 8

LA good indicator of an attacker ©

Averag

SPEC 4-core: 31465 mixes, SPEC 8-core: 31464/2 (15732) mixes, SPEC 16-core: 15732/2 (7866) mixes
One 8/16-core mix is created by mixing two/four 4-core mixes.

SPEC-4
PARSE(
Clouds

Fooling the Sense of a Cross-Core
Eviction based Attacker by Prefetching
the Common Sense

31

Our Proposal: 10K Feet View

-

Fooling the Sense of the Attacker by Prefetching Common Sense

~

N J
- ™
Fooling the sense of an attacker:
\time(LLC hit) = time(LLC miss))
g N
Common sense:
Prefetch the back-invalidation hits (before attacker probes)
KBack-invalidation Triggered Prefetcher (BITP) y

32

Why not Prevent Cross-Core Eviction?

SHARP [ISCA ‘17] does the same,
affects the replacement priority chain

- ™
Significant performance degradation with state-of-the-art

replacement policies and many issues [WOOT@USENIX ‘19]
Y

33

Our Proposal at the Per-core L2 Level

L2

®

BACK-INV + ADDRESS
LLC SLICE

BACK-INV: BACK-INVALIDATION COMMAND

34

Our Proposal at the Per-core L2 Level

IF (L2 HIT) AND (CMD=BACK-INV)) THEN

L2

@BLOCK ADDRESS OF BACK-INVALIDATION HIT

S

®

BITP

BACK-INV + ADDRESS

LLC SLICE

CMD: COMMAND

BACK-INV: BACK-INVALIDATION COMMAND

35

Our Proposal at the Per-core L2 Level

IF (L2 HIT) AND (CMD=BACK-INV)) THEN
2 BLOCK ADDRESS OF BACK-INVALIDATION HIT

LZ\

® BITP| ~®
\J\ MSHRs

BACK-INV + ADDRESS
@ON—CHIP INTERCONNECT

LLC SLICE ~

BLOCK ALLOCATE

DRAM REQUEST/RESPONSE,

BLOCK ALLOCATED IN LLC AS PER LLC-FILL POLICY
CMD: COMMAND

BACK-INV: BACK-INVALIDATION COMMAND

Our Proposal at the Per-core L2 Level

IF (L2 HIT) AND (CMD=BACK-INV)) THEN
2 BLOCK ADDRESS OF BACK-INVALIDATION HIT

S

N - \J\ MSHRs

QUEUE ,

T N T BACK-INY + ADDRESS
@ON-CH/P INTERCONNECT

LLC SLICE ~
RESPONSE

BLOCK ALLOCATE

DRAM REQUEST/RESPONSE,

BLOCK ALLOCATED IN LLC AS PER LLC-FILL POLICY
CMD: COMMAND

BACK-INV: BACK-INVALIDATION COMMAND

BITP

4 N
BITP works independent of the core/thread id

kT hread migration does not affect BITP)

Works irrespective of LLC replacement policy

kDoeS not daffect the priority chain y

[No support from 0S/compiler/runtime system/ISA © }

38

A quick security evaluation:

~

BITP on Poppler (a PDF rendering library)

39

e e

-
-
-

TextNextLine

._J (a)Baseline
0 50 100 150 200 250 300 350 400 450 500
SetFont
J (a)Baseline
0 50 100 150 200 250 300 350 400 450 500
TextMoveSet
_H FJ (a)Baseline
0 50 100 150 200 250 300 350 400 450 500
ShowSpaceText
(a)Baseline
0 50 100 150 200 250 300 350 400 450 500

", All Functions

40

No More Inclusive LLCs © So BITP ®

[Yes, recent machines have employed non-inclusive LLCs

However, Coherence Directory is inclusive even if the LLC is
non-inclusive [S&P ‘19]: Intel and AMD machines, So BITP ©

|

41

Effect on System Performance

1-8‘3‘ [SHiP+BITP over SHiP _® HAWKEYE+BITP over HAWKEYE
1.02
1.01
1
0.99 I I
0.98
& & A & A A N4
"\ S & S & o N Q&
v N W Q Q) Q P e
v W & & >
TN LAY AV AV Y

{Marginal performance gain: win-win situation ©

42

Key Takeaways

- D
Prefetcher can fool a cross-core LLC attacker

N J

- D
Prefetching on Back-invalidation hits

N J

- D
~zero hardware overhead and no performance loss

N y

43

Key Takeaways

Hardware Hardware
Prefetching: Prefetching:

(Mitigating cross- (Creating a cross-
core timing thread timing
channels) channel)

g o)| @ A
Back-invalidation Whispering Streamers
Triggered Prefetching [HASP@ISCA ‘19,

[PACT “19] Poster@MICRO ’'19
N —/ K ¢ | J

Whispering Streamers:
[Adi, Biswa, and Prakhar
HASP@ISCA ‘19 and
Poster@MICRO '19]

Streamers: What We Know?

miss
Sequence_> 100 | 102 | 104 | 503 | 504 | 501 | 499

100 | 102 | 104 | 504 | 501 499+%Trained!

1st 2nd 3rd 1st an 3rd
miss missS miss miss miss miss

Stream direction

— memory
start access end
addr addr
v
Monitored
region

Y
prefetch distance prefetch degree

Streamers: Our Hunch

{ Streamers are shared between hyper threads

—

{ A cross-thread covert-channel in an SMT core

TO

47

Other Prefetchers in Intel Machines

® L2 Stream

® L2 Adjacent Line - W ~

13 Disabl
@® .1 Next-Line isabled MSR: Ox12a4

|
{ 1 1 1
|
|

® 1.1 [P-based Stride J

Our Goal: What Are We Trying to Answer?

{ [s the Stream Prefetcher shared b/w SMT threads?]

|

What triggers the stream prefetcher with cross-
threads?

|

-

.

Does Streamer Trigger Multiple Prefetching?

~

Can the Streamer leak?

50

Our Setup and Assumptions

-

-

Two SMT threads on an isolated core accessing
4KB OS pages

~

)

{ All prefetchers except the streamer disabled }

|

Intel Kaby Lake i5, 4 cores (SMT), 64KB L1, 256KB L2,

1.5MB L3 /core

|

51

Experiment 1: Is the Streamer Shared?

%; 100000 O Thread 1 M Thread 2

© 80000

S

Q

£ 60000 . .
< 40000

o

£ 20000

O

ks 0

“+ve/-ve’ “tve/+ve’ -ve/+ve’ -ve/-ve’

Accesses made to OS pages covering a large array of 4MB

Insight: Stream table entry is shared b/w SMT threads

Experiment 2: How does the Streamer get Triggered?

_ E

10

11

T1

Threadl accesses linel

53

Experiment 2: How does the Streamer get Triggered?

4&

T1

PP

T2

11

Trigger : Thread?2 accesses line?2

54

Experiment 2: How does the Streamer get Triggered?

T2

i3456789

10

11

4&

\ J
v

T Prefetched Lines

|

Insight: Two misses (even accesses)

can trigger the streamer, prefetch degree varies from four to eight

|

55

Experiment 3: Does Streamer Trigger Multiple
Prefetching?

.2 3 4 5 6 7 8 ---19 20 21 22

T1

{ Thread1 accesses linel

Experiment 3: Does Streamer Trigger Multiple

Prefetching?

22

23

W:::05675 - ufla

ﬂk

T1 T2

{ Trigger : Thread2 accesses line20

Experiment 3: Does Streamer Trigger Multiple
Prefetching?

Prefetcl;led Lines Prefetcheq Lines
. 2 3 4 5 6 7 8 --- 3 21 22 23
2 ﬂ‘
T1 T2

Insight: Prefetching happens at the trigger and the
previous access

58

So Where Are We?

Shared b/w SMT threads on the same core

Two accesses can trigger the streamer

dCCESS

{ Prefetching happens at trigger and the previous

Can the Streamer leak?

59

Flush+Reload For Covert Channel: 101

SENDER

S T

X T T P e P Y
B

RECEIVER

g
Step O: Sender and receiver agree on
a few cache sets

~

%
~

c
Step 1: Sender does not flush/flushes

cache sets while running
_

)

/Step 2: Receiver reloads the cache

sets
-

Low latency: 1,
high latency: O

60

Our Proposal: Flush+Prefetch+Reload

Step O: Sender flushes all cache

SENDER RECEIVER
lines in a page

Step 1: Sender accesses linel,
line2, and line3 lines of the page

the same page

Hit means sender sent bit 1,
Miss bit O

Step 2: Receiver accesses line4 of
L2
61

Our Proposal: Flush+Prefetch+Reload

SENDER RECEIVER
LBandwidth 13.49 KB/s }

[Accu racy 91.3% }

62

So Where Are We?

|

Shared b/w SMT threads on the same core

|

Two accesses can trigger the streamer

Ve

-

Prefetching happens at trigger and the previous
access

Yes! as a covert channel and possibly as a side channel

63

Takeaways

Prefetchers can mitigate eviction based attacks

Existing prefetchers can be leaky too

-

What next: Side channel attack using Streamer, stay
tuned, may be MAST ‘20 ©

\

64

- a
“It takes two to speak the truth - one to speak and
Kanother to hear” - Henry David Thoreau)
4 7 i N
_ ; /
4 o N
R DD (i)
Corporation
- /

65

Wanna Join Us (CARS@CSE-IITK)?

66

