
SHAKTI DEVELOPMENT BOARD

USER MANUAL

DEVELOPED BY: SHAKTI DEVELOPMENT TEAM @ IITM ’19

SHAKTI.ORG.IN

CONTACT @ shakti [dot] iitm [@] gmail [dot] com

shakti [dot] iitm [@] gmail [dot] com

0.1 Proprietary Notice

Copyright © 2019–2020, SHAKTI @ IIT Madras.

All rights reserved. Information in this document is provided “as is,” with all faults.

SHAKTI @ IIT Madras expressly disclaims all warranties, representations, and con-

ditions of any kind, whether express or implied, including, but not limited to, the

implied warranties or conditions of merchantability, fitness for a particular purpose

and non-infringement.

SHAKTI @ IIT Madras does not assume any liability rising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, in-

cluding without limitation indirect, incidental, special, exemplary, or consequen-

tial damages.

SHAKTI @ IIT Madras reserves the right to make changes without further notice to

any products herein.

The project was funded by MeITY, Government of India

1

0.2 Release Information

Version Date Changes

0.1 February 27, 2020 Initial Release

0.2 June 22, 2020 Updated Section 5.2

2

Table of Contents

0.1 Proprietary Notice . 1

0.2 Release Information . 2

1 Brief Introduction to SHAKTI 5

1.1 Processors . 5

1.1.1 E-class . 6

1.1.2 C-class . 6

1.2 Tapeouts . 7

1.2.1 RIMO . 7

1.2.2 Risecreek . 8

1.2.3 Aardonyx . 8

1.3 Software . 9

1.3.1 SHAKTI-SDK . 9

1.3.2 PlatformIO IDE . 9

1.3.3 Arduino IDE . 9

1.3.4 Supported Operating systems 9

2 Board Details 10

2.1 Development boards . 10

2.1.1 Board Availability . 11

2.1.2 Documentation . 11

3 Board setup 12

3.1 Powering the board . 12

3.2 Setting up the Debugger . 13

3.2.1 Debug interface over Xilinx FTDI (recommended) 13

3.3 Programming SHAKTI . 14

3.3.1 Prerequisites . 14

3.3.2 Tool Installation . 14

3.3.3 Programming E-arty35t RTL bitstream onto the FPGA 17

3.3.4 Programming C-arty100t RTL bitstream onto the FPGA . . . 18

4 SoC Device Information 19

4.1 Device memory map . 20

4.1.1 E-arty35T memory map . 20

4.1.2 C-arty100T memory map . 22

4.1.3 Aardonyx memory map . 23

5 Software Development Flow 25

5.1 SHAKTI-SDK Architecture . 25

5.1.1 Board Support Package . 26

5.1.2 shakti-tools . 27

3

5.1.3 Software . 27

5.1.4 Makefile . 27

5.2 Setting up the SHAKTI-SDK . 29

5.2.1 Pre-requisites . 29

5.2.2 Download the SHAKTI-SDK repository 29

5.2.3 Download the SHAKTI-TOOLS repository 29

5.2.4 Setting up SHAKTI Tool-chain 29

5.2.5 Update the SDK or TOOLS . 31

5.3 Application Development . 31

5.3.1 Steps to add a new application to SHAKTI-SDK 32

5.3.2 My first program ! . 32

5.3.3 Build . 32

5.3.4 Run . 33

5.4 Running application in Debug mode 33

5.4.1 Steps to run . 33

5.4.2 Application flow . 34

5.5 Running application in Standalone mode 34

5.5.1 Steps to generate standalone user application 35

Appendices 36

A Device pin mapping 36

A.1 C-arty100T . 36

A.2 E-arty35T . 39

A.3 Aardonyx . 43

B Understanding Pinmux design 47

C Platform IO for SHAKTI 49

C.1 Prerequisites . 49

C.2 Installation . 50

C.3 Using SHAKTI SDK in PlatformIO IDE 50

C.3.1 Getting Started with your first application 50

C.3.2 Creating a project from scratch 51

Bibliography 52

4

1SECTION

Brief Introduction to SHAKTI

SHAKTI is an open-source initiative by the Reconfigurable Intelligent Systems Engineer-

ing (RISE) group at IIT-Madras [1]. The aim of SHAKTI initiative includes building open

source production grade processors, complete System on Chips (SoCs), development

boards and SHAKTI-based software platform. The SHAKTI project is building a family

of 6 processors, based on the RISC-V ISA [2]. There is a road-map to develop reference

System on Chips (SoC) for each class of processors, which will serve as an exemplar for

that family [3]. While the primary focus of the team is architecture research, these SoCs

will be competitive with commercial offerings in the market with respect to area, power

and performance. The Current SoC (as of 2019) developments are Controller class (C-

Class) [5] and Embedded Class (E- Class) [6].

1.1 Processors

SHAKTI is a RISC-V [2] based processor developed at RISE lab, IIT Madras [1] [7]. SHAKTI

has envisioned a family of processors as part of its road-map, catering to different seg-

ments of the market. They have been broadly categorized into "Base Processors", "Multi-

Core Processors" and "Experimental Processors" [3]. The E and C-classes are the first

set of indigenous processors aimed at Internet of Things (IoT), Embedded and Desktop

markets. The processor design is free of any royalty and is open-sourced under BSD-3

license. A brief overview of the E and C-classes of processors is described below.

5

1.1.1 E-class

The E-Class [6] is a 32/64 bit micro-controller capable of supporting all extensions of

RISC-V ISA as listed in Table 1. The E-class is an In-order 3 stage pipeline having an

operational frequency of less than 200MHz on silicon. It is positioned against ARM’s

M-class (CorTex-M series) cores [3]. The major anticipated use of the E-class of proces-

sors is in low-power compute environments, automotive and IoT applications such as

smart-cards, motor-controls and home automation. The E-class is also capable of run-

ning Real Time Operating Systems (RTOS) like Zephyr OS [10] and FreeRTOS [19].

E-arty35T [14] is an SoC built around E-class [1]. The E-arty35T SoC is a single-chip

32-bit E class micro controller with 128kB RAM, has 32 General Purpose Input Out-

put (GPIO) pins (out of which upper 16 GPIO pins are dedicated to onboard LEDs and

switches), a Platform Level Interrupt Controller (PLIC), a Counter, 2 Serial Peripheral

(SPI), 2 Universal Asynchronous Receiver Transmitter (UART), 1 Inter Integrated Circuit

(I2C), 6 Pulse Width Modulator (PWM) and an in-built Xilinx Analog Digital Converter

(X-ADC).

I Base Integer Instruction Set

M Standard Extension for Integer Multiplication and Division

A Standard Extension for Atomic Instructions

F Standard Extension for Single-Precision Floating-Point

D Standard Extension for Double-Precision Floating-Point

C Standard Extension for Compressed Instructions

Table 1: RISC-V ISA extensions in SHAKTI

1.1.2 C-class

The C-class [5] is an in-order 6 stage 64-bit micro controller supporting the entire sta-

ble RISC-V ISA. It targets the mid-range compute systems running over 200-800MHz. It

can also be customized upto 2 Ghz. The C-class is highly customizable and there are

variants for low-power and high-performance. It is positioned against ARM’s Cortex

A35/A55. Linux, Sel4 and Free RTOS are some of the Operating systems ported and ver-

ified with C-class [3].

C-arty100T [15] is a SoC build around C-class. The C-arty100T SoC is a single-chip 64-

bit C class micro controller with 128MB DDR3 RAM, 16 General Purpose Input Output

(GPIO) pins, a Platform Level Interrupt Controller (PLIC), a Counter, 1 Universal Asyn-

chronous Receiver Transmitter (UART) and 1 Inter Integrated Circuit (I2C). It is aimed

6

at mid-range application workloads and has a very low power profile, as well as support

for optional memory protection [1] [3].

1.2 Tapeouts

Two tapeouts of the C-class processors have been performed. They have been code

named as RIMO and Rise-creek.

1.2.1 RIMO

RIMO is the code name of the SHAKTI C-class based SoC that has been taped-out at

Semi-Conductor Laboratory (SCL) at Chandigarh using 180 nm process technology. The

144 sq.mm. chip has been tested to operate at a frequency of up to 70 MHz. The chip

has been packaged on a 208-pin Ceramic Quad Flat Pack (CQFP).

Figure 1: RIMO

The features of the SoC are :

• In-order 5 stage 64-bit micro controller supporting the entire stable RISC-V ISA

(RV64IMAFD).

• Compatible with privilege spec (v1.10) of RISC-V ISA and supports the sv39 virtu-

alisation scheme.

• Includes a branch predictor with a Return-Address-Stack.

• Pipelined IEEE-754 compliant single and double precision floating point units

and Multi-channel Direct Memory Access (DMA) support.

• Peripherals like 2 x I2C, 2 x UART, 2 x QSPI, a Debugger, a 256KB tightly coupled

memory, 32-bit GPIOs and an expansion bus that can be connected to an FPGA.

7

1.2.2 Risecreek

CREEK is the code name of the SHAKTI C-class based SoC that has been taped-out at

INTEL,Oregon, USA using 22 nm process technology. The 16 sq.mm. chip has been

tested to operate at a frequency of up to 350 MHz. The chip has been packaged on a

208-pin Ball Grid Array (BGA).

Figure 2: RISECREEK

The features of the SoC are :

• In-order 5 stage 64-bit micro controller supporting the entire stable RISC-V ISA

(RV64IMAFD).

• Compatible with privilege spec (v1.10) of RISC-V ISA and supports the sv39 virtu-

alisation scheme.

• Includes a branch predictor with a Return-Address-Stack.

• Pipelined IEEE-754 compliant single and double precision floating point units

Multi-channel Direct Memory Access (DMA) support.

• Peripherals like 2 x I2C, 1 x UART, 2 x QSPI, a Debugger, a 128KB tightly coupled

memory, 32-bit GPIOs and an expansion bus that can be connected to an FPGA.

For more Technical specifications visit: https://shakti.org.in/tapeouts

1.2.3 Aardonyx

Coming soon....

8

https://shakti.org.in/tapeouts

1.3 Software

SHAKTI class of processors have a wide range of system softwares and tool chain sup-

port. There are Software Development Kits (SDK) and Integrated Development Envi-

ronment (IDE) dedicated for SHAKTI SoCs.

1.3.1 SHAKTI-SDK

Software Development Kits (SDKs) are integral part of any product development. The

main objective behind using a SDK is to reduce the development time. The SHAKTI-

SDK is a platform that enables developing applications over SHAKTI class of processors.

We provide the firmware support for end users to develop application. The SHAKTI-SDK

is simple and easily customizable. Some of the essential features like DEBUG codes and

board support libraries are provided.

1.3.2 PlatformIO IDE

PlatformIO is an All-In-One IDE extension in Visual Studio that now supports SHAKTI

and its applications across all desktops (Linux, Mac, Windows). This IDE enables de-

velopers to code, build, upload, test and debug their applications in a single place with-

out the need to switch to multiple terminals and run complex commands. PlatformIO

has an extension that supports SHAKTI development boards. For more details visit

https://github.com/platformio/platform-shakti

1.3.3 Arduino IDE

Arduino IDE is an open-source software used for electronic prototyping, helping user

create interactive projects. We have added SHAKTI board support. The aim of this IDE

is to make application development over SHAKTI as close as possible to Arduino.

1.3.4 Supported Operating systems

Several operating systems have been ported to SHAKTI class of processors. There is

also a simple software framework to port different softwares to SHAKTI. Linux, Sel4,

Free RTOS, and Zephyr are some of the standard operating systems proven to work on

SHAKTI. Linux porting is available at:

https://gitlab.com/shaktiproject/software/shakti-linux

9

https://github.com/platformio/platform-shakti
https://gitlab.com/shaktiproject/software/shakti-linux

2SECTION

Board Details

We aim to provide SHAKTI support on different types of development boards. As part

of this effort, initially we are supporting two varieties of FPGA boards. They are Xilinx’s

Arty7 35T and Arty7 100T respectively. Below sections, list the detail information on the

boards and purchase of boards.

2.1 Development boards

There are development boards for both E and C class of processors. The details on the

board support for different classes of processors are given below.

1. E-arty35T[14]

– E-arty35T is a SoC based on SHAKTI E class [6].

– E-arty35T is supported on Artix 7 35T board.

– It has an abridged version of 32 bit E class. It includes I, M, A and C.

2. C-arty100T[15]

– C-arty100T is a SoC based on SHAKTI C class [5].

– C-arty100T is supported on Artix 7 100T board.

– It has an abridged version of 64 bit C class. It includes I, M, A, F, D and C.

10

2.1.1 Board Availability

The boards can be bought from,

1. Digilent

https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists.

2. Amazon

https://www.amazon.in/Digilent-Artix-7-Development-Makers-Hobbyists/
dp/B017BOBNEO?tag=googinhydr18418-21.

2.1.2 Documentation

1. Xilinx - Vivado Design Suite

https://www.xilinx.com/products/design-tools/vivado.html

2. Arty A7 - User manual

https://reference.digilentinc.com/reference/programmable-logic/arty-a7/
reference-manual

11

https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists
https://www.amazon.in/Digilent-Artix-7-Development-Makers-Hobbyists/dp/B017BOBNEO?tag=googinhydr18418-21
https://www.amazon.in/Digilent-Artix-7-Development-Makers-Hobbyists/dp/B017BOBNEO?tag=googinhydr18418-21
https://www.xilinx.com/products/design-tools/vivado.html
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual

3SECTION

Board setup

The earlier section listed out the development boards supported by SHAKTI. This sec-

tion, discusses the procedure to set up the board for application development. Topics

include connecting a debugger, installing Vivado, building the SHAKTI C-class/E-class

bit stream, programming the on-board configuration memory and running example

programs. Before running example programs, we need to make sure the board is up

and running. Broadly, the following steps needs to be followed, to setup the board.

1. Connect the board to the PC.

2. Program the SHAKTI BitStream to the board.

3. Run OpenOCD to test above step.

4. Setup necessary wiring for devices or sensors.

3.1 Powering the board

Plug one end of the micro USB cable into the PC and the other end to the MicroUSB

connector (J10) in the board. This will power ON the board. The connector J10 is a

JTAG & UART port combination. If a sensor requires more power, an external 12V power

supply can be connected via Power Jack (J12) . Refer Arty reference manual for detailed

power on instructions.

12

https://reference.digilentinc.com/reference/programmable-logic/arty/reference-manual?redirect=1

3.2 Setting up the Debugger

This section explains setting up the board for debug mode. The setup for standalone

mode will be discussed later. The debugger for the board is the Xilinx FTDI chip on the

Arty boards. The details to connect the debugger to the board is given below.

3.2.1 Debug interface over Xilinx FTDI (recommended)

The FPGA board is powered on by connecting the micro USB to pin J10. This also con-

nects internally to the UART via FTDI interface which provides debugger support.

Figure 3: FTDI connection

13

3.3 Programming SHAKTI

This section walks through implementing SHAKTI C and E-class SoC’s on Xilinx’s Arty7

100T and 35T. In order to realize SHAKTI on Xilinx development boards, the relevant

Register Transfer Level (RTL) design has to be programmed on to the FPGA. And over

that, the applications can be run. The procedure to do the same is listed below.

3.3.1 Prerequisites

Ensure that Ubuntu 16.04 or above is used. In this machine, the following list of software

packages has to be installed.

A. Bluespec Compiler.

B. Device Tree Compiler.

C. Vivado 2017 or above.

D. Miniterm.

E. OpenOCD.

Before starting the Board has to be connected to the PC. The following links host the RTL

design. The next few sections takes you to generating a RTL bisttream and programming

it to FPGA.

• E class on Artix7 35T.

https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/
boards/artya7-35t/e-class

• C class on Artix7 100T.

https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/
boards/artya7-100t/c-class

3.3.2 Tool Installation

A. Installation of Bluespec Compiler 1

An open source version of the Bluespec Compiler is available online. By installing the

open-source Bluespec compiler, one will be able to generate the synthesizable verilog

compatible for FPGA targets.

• Open a new terminal and move to the Home folder. Copy paste the below com-

mands in the terminal and press enter.

sudo apt install ghc libghc-regex-compat-dev libghc-syb-dev iverilog

1 The latest compiler has been tested and known to work for Ubuntu 18.04. Also a binary built on

16.04 will not work on 18.04 due to libgc version mismatch. It is suggested you do a fresh install for 16.04.

14

https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-35t/e-class
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-35t/e-class
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-100t/c-class
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-100t/c-class
https://github.com/B-Lang-org/bsc

sudo apt install libghc-old-time-dev libfontconfig1-dev libx11-dev

sudo apt install libghc-split-dev libxft-dev flex bison libxft-dev

sudo apt install tcl-dev tk-dev libfontconfig1-dev libx11-dev gperf

sudo apt install itcl3-dev itk3-dev autoconf git

• Download the repository

git clone --recursive https://github.com/B-Lang-org/bsc

cd bsc

make PREFIX=/path/to/installation/folder

• After you have done the above steps, add the path you have installed the bsc com-

piler to your $PATH in the ḃashrc or ċshrc

export PATH=$PATH:/path/to/installation/folder/bin

• Typing bsc in your terminal should display the help options

bsc -help

B. Install DTC (device tree compiler)

We use the DTC 1.4.7 to generate the device tree map in the boot f i les. Please be in the

Home folder and run the below commands:

sudo wget https://git.kernel.org/pub/scm/utils/dtc/dtc.git/snapshot/dtc-1.4.7.tar.gz

sudo tar -xvzf dtc-1.4.7.tar.gz

cd dtc-1.4.7/

sudo make NO_PYTHON=1 PREFIX=/usr/

sudo make install NO_PYTHON=1 PREFIX=/usr/

C. Installing Vivado HLx 2018.3

1. If you dont have a Xilinx account, create a free account, using below url

https://www.xilinx.com/registration/create-account.html

2. Download the Vivado HLx 2018.3 Linux Self Extracting Web Installer, by clicking

on the below link

https://www.xilinx.com/member/forms/download/xef-vivado.html?filename=
Xilinx_Vivado_SDK_Web_2018.3_1207_2324_Lin64.bin

3. Make the Vivado installer executable and run it using:
chmod +x Xilinx_*.bin
sudo ./Xilinx_*.bin

15

https://www.xilinx.com/registration/create-account.html
https://www.xilinx.com/member/forms/download/xef-vivado.html?filename=Xilinx_Vivado_SDK_Web_2018.3_1207_2324_Lin64.bin
https://www.xilinx.com/member/forms/download/xef-vivado.html?filename=Xilinx_Vivado_SDK_Web_2018.3_1207_2324_Lin64.bin

4. Once the installer loads2, click "Next".

5. Now enter your Xilinx username and password. Then Click "Next".

6. Agree to all three statements and Click "Next". Incase, you disagree you can’t pro-

ceed further.

7. Select "Vivado HL WebPACK" and click "Next".

8. Click "Reset to Defaults" and then press "Next". 3

9. By default, the "installation directory" is "/tools/Xilinx". This is fine. Click "Next".

10. Click "Install" and wait for the installer to finish.

11. Install the Xilinx cable drivers:

cd /tools/Xilinx/Vivado/2018.3/data/xicom/cable_drivers/lin64/install_script/install_drivers

sudo ./install_drivers

12. Do some permissions cleanup:

cd
cd .Xilinx/Vivado
sudo chown -R $USER *
sudo chmod -R 777 *
sudo chgrp -R $USER *

13. Add Vivado path to the environmental variable PATH in .bashrc :
export PATH=$PATH:/tools/Xilinx/Vivado/2018.3/bin
export PATH=$PATH:/tools/Xilinx/SDK/2018.3/bin

14. Test Vivado

vivado -version
Vivado v2018.3 (64-bit)
SW Build 2405991 on Thu Dec 6 23:36:41 MST 2018
IP Build 2404404 on Fri Dec 7 01:43:56 MST 2018
Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

15. Download the board files and Copy it to vivado repository

git clone https://github.com/Digilent/vivado-boards.git
cd vivado-boards/new/board_files
sudo cp -r ./* /tools/Xilinx/Vivado/2018.3/data/boards/board_files

D. Installation of Miniterm
2If installer says, a newer version is available. Please press continue and stay in the current version
3Incase, size is a constraint in your system. Just select Artix-7 under "Devices->Production Devices->7

Series. Let, the other two Top menus remain untouched

16

sudo apt-get install python-serial

E. Installation of RISC-V OpenOCD

• Clone the RISC-V OpenOCD repository

git clone https://github.com/riscv/riscv-openocd.git
cd riscv-openocd
./bootstrap

• Building the OpenOCD toolchain.
export RISCV=/path/to/install/riscv/OpenOCD
./configure --prefix=$RISCV --enable-remote-bitbang --enable-ftdi
--enable-jlink --enable-jtag_vpi --disable-werror
make
sudo make install
export PATH=$PATH:$RISCV/bin

3.3.3 Programming E-arty35t RTL bitstream onto the FPGA

• Connect the board to the PC and move to the HOME directory.

Figure 4: BOARD – PC

• Clone the shakti-soc repository to PC.
git clone https://gitlab.com/shaktiproject/cores/shakti-soc.git
cd shakti-soc/fpga/boards/artya7-35t/e-class

• Program the FPGA.4

make quick_build_xilinx

• Disconnect the USB Cable to the board and reconnect again.

• Run OpenOCD command.5

sudo $(which openocd) -f ./shakti-arty.cfg

4To rerun "make quick_build_xilinx", delete the folder shakti-soc/fpga/boards/artya7-35t/e-

class/fpga_project/e-class and try.
5If OpenOCD runs and listens on port 3333, then your board is programmed with SHAKTI. You are

ready to run applications, benchmarks, etc... on it

17

https://gitlab.com/shaktiproject/cores/shakti-soc.git

3.3.4 Programming C-arty100t RTL bitstream onto the FPGA

• Connect the board to the PC and move to the HOME directory.

• Clone the shakti-soc repository to PC.
git clone https://gitlab.com/shaktiproject/cores/shakti-soc.git
cd shakti-soc/fpga/boards/artya7-100t/c-class
sed -i 's/BSCAN2E=.*/BSCAN2E=enable/g' core_config.inc

• Program the FPGA6 .

make quick_build_xilinx

• Disconnect the USB Cable to the board and reconnect again.

• Run OpenOCD command5.

sudo $(which openocd) -f ./shakti-arty.cfg

6To rerun "make quick_build_xilinx", delete the folder shakti-soc/fpga/boards/artya7-35t/e-

class/fpga_project/c-class and try

18

https://gitlab.com/shaktiproject/cores/shakti-soc.git

4SECTION

SoC Device Information

The SHAKTI based SoC’s are built of processor, memory and various Input-Output de-

vices (I/O). The devices in the SoC are memory mapped. Memory mapped I/O is a

method to communicate between the core and the peripheral devices. In this method

the device address and the internal registers of the devices are mapped to memory lo-

cations. The processor and these devices communicate with the help of the AXI system

bus. SHAKTI E and C class use a Common AXI extension bus to realize this memory

mapped I/O. The next two sections deal with the list of devices and the memory map of

the devices for E-arty35T and C-arty100T.

Sl. No Device name Abbreviation

1 GPIO General Purpose Input Output

2 UART Universal Asynchronous Receiver Transmitter

3 I2C Inter-Integrated Circuit

4 SPI Serial Peripheral Interface

5 PWM Pulse Width Modulation

6 PLIC Platform Level Interrupt Controller

19

Sl. No Device name Abbreviation

7 CLIC Core Level Interrupt Controller

8 ADC Analog Digital Converter

9 SDRAM Synchronous Dynamic Random Access Memory

10 BRAM Block Random Access Memory

11 DDR Double Data Rate

Table 2: Device description table

4.1 Device memory map

The overall layout of the memory map of a device based around the SHAKTI class of

processor is listed below. This allows easy porting of software.

4.1.1 E-arty35T memory map

Sl.No Peripheral Base Address Start Base Address End

1. Memory (TCM) 0x80000000 0x8001FFFF

2. Debug 0x00000010 0x0000001F

3. PWM 0 0x00030000 0x000300FF

4. PWM 1 0x00030100 0x000301FF

5. PWM 2 0x00030200 0x000302FF

6. PWM 3 0x00030300 0x000303FF

7. PWM 4 0x00030400 0x000304FF

20

Sl.No Peripheral Base Address Start Base Address End

8. PWM 5 0x00030500 0x000305FF

9. SPI 0 0x00020000 0x000200FF

10. SPI 1 0x00020100 0x000201FF

11. UART0 0x00011300 0x00011340

12. UART1 0x00011400 0x00011440

13. CLINT 0x02000000 0x020BFFFF

14. GPIO 0x00040100 0x000401FF

15. PLIC 0x0C000000 0x0C01001F

16. I2C 0x00040000 0x000400FF

17. XADC 0x00041000 0x00041400

Table 3: E-arty35T class memory map

21

4.1.2 C-arty100T memory map

Sl. No Peripheral Base Address Start Base Address End

1. Memory (DDR) 0x80000000 0x87FFFFFF

2. Debug 0x00000000 0x0000000F

3. UART0 0x00011300 0x00011340

5. I2C 0x020C0000 0x020C00FF

4. GPIO 0x020D0000 0x020D00FF

6. CLINT 0x02000000 0x020BFFFF

7. PLIC 0x0C000000 0x0C020000

Table 4: C-arty100T memory map

22

4.1.3 Aardonyx memory map

Sl.No Peripheral Base Address Start Base Address End

1. SDRAM address 0x80000000 0x8FFFFFFF

2. SDRAM CFG 0x00000200 0x000002FF

3. PWM 0 0x00030000 0x000300FF

4. PWM 1 0x00030100 0x000301FF

5. PWM 2 0x00030200 0x000302FF

6. PWM 3 0x00030300 0x000303FF

7. PWM 4 0x00030400 0x000304FF

8. PWM 5 0x00030500 0x000305FF

9. SPI 0 0x00020000 0x000200FF

10. SPI 1 0x00020100 0x000201FF

11. SPI 2 0x00020200 0x000202FF

23

Sl.No Peripheral Base Address Start Base Address End

12. UART 0 0x00011300 0x00011340

13. UART 1 0x00011400 0x00011440

14. UART 2 0x00011500 0x00011540

15. CLINT 0x02000000 0x020BFFFF

16. I2C 0 0x00040000 0x000400FF

17. GPIO 0x00040100 0x000401FF

18. Bootrom 0x00040200 0x000402FF

19. pin mux 0x00040300 0x000403FF

20. I2C 1 0x00040400 0x000404FF

21. PLIC 0x0C000000 0x0C01001F

22. QSPI0 0x00000100 0x000001FF

23. QSPI0 Mem 0x90000000 0x9FFFFFFF

Table 5: Aardonyx memory map

24

5SECTION

Software Development Flow

This section presents the software framework for design and implementation of em-

bedded/IoT applications. We discuss in detail, on how to develop applications using

the SHAKTI Software Development Kit (SHAKTI-SDK).

5.1 SHAKTI-SDK Architecture

The SHAKTI-SDK is a C/C++ platform to develop applications over SHAKTI. The SDK

has the necessary firmware code and framework to develop newer applications on the

hardware. The framework is light weight and customizable.

SHAKTI-SDK

BSPDOCS SHAKTI-TOOLS SOFTWARE

DRIVER

LIBS

CORE

INCLUDE

UTILS

BOARDS

EXAMPLES

BENCHMARK

PROJECTS

2

Figure 5: SDK architecture

25

5.1.1 Board Support Package

The BSP consists of driver files for various devices and system files. It contains certain

platform dependent definitions for each board. Essentially, the BSP is the layer above

the hardware. It includes the following sub directories,

1. drivers

The drivers are a set of software constructs that help software applications to ac-

cess the devices in the SoC. They are generally low level API’s, that execute a par-

ticular task in the hardware.

DRIVERS

PLIC GPIO

I2C

SPI

QSPI

UART

CLINT

PWM

2. include

This folder has header files for core and each driver. The board independent

variable/macro definitions and declarations pertaining to each driver is included

here.

3. libs

The library utilities, boot code are hosted here. Library is a common place for

reusable code. The libraries can be compiled as a separate "lib" file and used.

4. core

The core usually has functions related to the startup codes, Trap handlers and in-

terrupt vectors.The codes related to memory initialisation are also available here.

5. utils

This contains the code related to standalone mode feature of the shakti processor.

26

6. third_party

This folder provides support for external boards as well as custom boards.Includes

the definitions of board specific functions such as console drivers.

5.1.2 shakti-tools

SHAKTI is a RISC-V based architecture. It uses the RISC-V toolchain to develop soft-

ware. The shakti-tools folder has "ready to use" RISC-V tools. It has a RISC-V GNU

tool chain, RISC-V instruction set simulator, OpenOCD (debugger) and RISC-V spike

simulator. These tools can be downloaded, along with the SHAKTI-SDK. Please check

section 5.2.4 for further details.

5.1.3 Software

The software folder provides a platform for developing various applications, indepen-

dent of the underlying BSP. All the applications/projects developed in SHAKTI-SDK re-

side in this folder. In general, a application will involve writing high level C/C++ code

that uses BSP API’s. The software folder is broadly classified in to three sub-directories,

1. Projects

This folder consists of applications developed using different sensors. These are

usually a combination of standalone applications.

2. Benchmarking

Applications or bare metal codes that are developed for bench-marking a core

reside here. These programs usually describe the capability of the SHAKTI class of

processors.

3. Examples

This is the place where any new standalone application is developed. Few ex-

ample programs involving sensors are already developed for different peripherals

and kept here. These programs demonstrate the integration of BSP and the core

support libraries with the user programs.

5.1.4 Makefile

To compile programs more efficiently the GNU’s MAKE utility is used. The make utility

uses the Makefile to compile program from source code. The output generated by the

MAKE utility is in ELF format. The Makefile has support for different target boards and

applications. The Makefile’s are mostly non-recursive and devoid of complex expres-

sions. The supported make commands are listed below.

• make help

Lists the possible commands supported in Makefile.

27

• make list_targets

List the boards that are supported.

• make list_applns

Lists the samples that are available in SHAKTI-SDK

• make software PROGRAM=? TARGET=?

PROGRAM can be found from "make list_applns"

TARGET= artix7_35t or artix7_100t or aardonyx

Default TARGET is artix7_35t

• make debug PROGRAM=? TARGET=?

PROGRAM can be found from "make list_applns"

TARGET= artix7_35t or artix7_100t or aardonyx

Default TARGET is artix7_35t

debug command adds the debug support to applns.

• make all

TARGET= artix7_35t

All the applications under example folder are compiled for above target.

• make clean

clean all the executable.

The design overrides the executable generated by the last target with current

target.

• make clean CLEAR=?

CLEAR ?= any application under list_applns

clean the executable for a application.

28

5.2 Setting up the SHAKTI-SDK

5.2.1 Pre-requisites

Ensure that the following packages are installed in the host system. To solve the soft-

ware dependencies, copy paste the below command in terminal and press enter.

sudo apt-get install autoconf automake autotools-dev curl make-guile

sudo apt install libmpc-dev libmpfr-dev libgmp-dev libusb-1.0-0-dev bc

sudo apt install gawk build-essential bison flex texinfo gperf libtool

sudo apt install make patchutils zlib1g-dev pkg-config libexpat-dev

sudo apt install libusb-0.1 libftdi1 libftdi1-2

sudo apt install libpython3.6-dev

5.2.2 Download the SHAKTI-SDK repository

SHAKTI-SDK repository contains scripts, board support packages to build your

application. It can be cloned by running the following command:

git clone https://gitlab.com/shaktiproject/software/shakti-sdk.git

5.2.3 Download the SHAKTI-TOOLS repository

The SHAKTI-TOOLS repository contains both 64bit and 32bit toolchain, for building

your application.

It can be cloned by running the following command:

git clone --recursive https://gitlab.com/shaktiproject/software/
shakti-tools.git

If you had omitted --recursive option earlier, then run the below command to clone the

submodules repository:

git submodule update --init --recursive

5.2.4 Setting up SHAKTI Tool-chain

SHAKTI uses RISC-V tools. The tool-chain can be installed in two ways,

• Manual method

29

https://gitlab.com/shaktiproject/software/shakti-sdk.git
https://gitlab.com/shaktiproject/software/shakti-tools.git
https://gitlab.com/shaktiproject/software/shakti-tools.git

· Build and install toolchain from riscv-tools [8].

· The riscv-tools repository has the readme to install RISC-V toolchain for SHAKTI-

SDK.

• Automatic method (Recommended)

· The SHAKTI-SDK repository provides the board support packagers and an

environment in which the applications can be developed.

· The Tool-chain executables are hosted in the SHAKTI-TOOLS

repository. (shakti-tools) [16].

· The absolute path of the tool-chain has to be added to "PATH" variable and

exported, to use it across the file system.

· The steps to export the tool chain to the PATH variable is provided below,

Assuming, one is in SHAKTI-TOOLS repository. Copy, paste the following commands in

the same terminal. This will essentially set the $PATH variable to the exact tool-chain

path for that particular session.

SHAKTITOOLS=/path/to/shakti-tools
export PATH=$PATH:$SHAKTITOOLS/bin
export PATH=$PATH:$SHAKTITOOLS/riscv64/bin
export PATH=$PATH:$SHAKTITOOLS/riscv64/riscv64-unknown-elf/bin
export PATH=$PATH:$SHAKTITOOLS/riscv32/bin
export PATH=$PATH:$SHAKTITOOLS/riscv32/riscv32-unknown-elf/bin

Things to know:

1. The availability of the tool chain across the file system is ensured by the export

command.

2. The above commands will export both 64 bit and 32 bit tool-chains. If only one

of the tool-chains is required, it can exported separately.

3. Please add the above lines in .bashrc file in the home folder to set the PATH

permanently instead of that particular session.

4. The variable $SHAKTITOOLS has the location of SHAKTI-TOOLS in the file

system.

5. The command which riscv64-unknown-elf-gcc helps you to verify whether tool-

chain path exported correctly.

Steps:

30

Automatic method

$ pwd
/home/user
$ git clone https://gitlab.com/shaktiproject/software/shakti-sdk.git
$ git clone --recursive https://gitlab.com/shaktiproject/software/
shakti-tools.git
$ cd shakti-tools
$ pwd
/home/user/shakti-tools
$ SHAKTITOOLS=/path/to/shakti-tools
$ export PATH=$PATH:$SHAKTITOOLS/bin:$SHAKTITOOLS/riscv64/bin
$ export PATH=$PATH::$SHAKTITOOLS/riscv32/bin
$ export PATH=$PATH:$SHAKTITOOLS/riscv64/riscv64-unknown-elf/bin
$ export PATH=$PATH:$SHAKTITOOLS/riscv32/riscv32-unknown-elf/bin
$ which riscv64-unknown-elf-gcc
/home/user/shakti-tools/riscv64/bin/riscv64-unknown-elf-gcc

Add export commands to .bashrc, save and close the file.

5.2.5 Update the SDK or TOOLS

To update your SDK or TOOLS repository to the latest version, move to the respective

repository (cd shakti-tools or cd shakti-sdk) and please use the command below.

$ git pull origin master
$ git submodule update --init --recursive

This updates the required repository to its latest version

5.3 Application Development

As discussed earlier, SHAKTI-SDK helps in developing applications for SHAKTI class of

processors. We are listing the steps to develop a small application using SHAKTI-SDK.

SHAKTI-SDK comes with a separate repository for Applications and Projects. A project

usually has its own design environment, except that it imports the BSP. An application

is a simple program that demonstrates the working of sensors using SHAKTI class of

processors. Any program with a smaller memory footprint is put under Applications.

Before developing an application, make sure that the pre-requisites mentioned below

are ready.

• Board is up and running with SHAKTI.

• Download and install SHAKTI-SDK.

• Install the RISC-V tool chain.

• set PATH variable for the tool chain.

31

https://gitlab.com/shaktiproject/software/shakti-sdk.git
https://gitlab.com/shaktiproject/software/shakti-tools.git
https://gitlab.com/shaktiproject/software/shakti-tools.git

5.3.1 Steps to add a new application to SHAKTI-SDK

An application program has to use the the BSP API’s for any device access. The steps

followed to develop a simple program is listed below

• The new application is created under one of the example/XYZ_applns folder.

• XYZ should be a device type in the SoC. For example it can be UART, I2C, etc...

• Lets assume, we are under the XYZ_applns directory.

• Create a folder for the new application and name it accordingly.

• Inside the folder, create source and header files for the application.

• Create and edit a new Makefile for the application (refer existing examples).

• The name of the application folder corresponds to the name of the application.

• Make an entry in the existing Makefile under ./shakti-sdk/software/examples for

the new application.

• Now typing make list-applns will list the new application as one under SHAKTI-

SDK.

5.3.2 My first program !

Follow the steps given below to compile and run a program to print "Hello World!"

• The device required is UART. Include UART device headers for the program.

• Write your program under software/examples/uart_applns/.

• Create a folder called ’first’.

• Create a first.c file and write a program to print "Hello World !".

• Create and edit a Makefile for the program and save in the ’first’ folder. Use exist-

ing programs in example folder for reference.

• Make a new entry for the program in the ’existing Makefile’ under examples folder.

5.3.3 Build

The make commands in SHAKTI-SDK gives various options to build and run a program.

The list of make commands can be found by typing make help in the terminal. Once

the program is built using MAKE command, the ELF file is generated. The ELF file is the

final executable that can be loaded into the memory and run.

$ cd shakti-sdk
$ make software PROGRAM=hello TARGET=artix7_35t

Interpreting above commands:

32

https://gitlab.com/shaktiproject/software/shakti-sdk/tree/master/software/examples

• PROGRAM is the new one created. It is listed by typing "make list_applns".

• TARGET= artix7_35t or artix7_100t or aardonyx.

• Default TARGET is artix7_35t.

5.3.4 Run

Once the application is built, the executable is generated in the output folder. The exe-

cutable is in ELF file format and they have the extension .shakti. There are two modes to

run an application on the arty 35t board. The two modes are discussed in the following

sections.

5.4 Running application in Debug mode

After the ELF for the target application is generated, the program can be run in Debug

or Standalone mode. Debug mode helps in incremental development. It also helps to

understand the program flow and debug applications easily.

The Arty35T board should be connected to the OpenOCD debugger, in order to debug

your program using the RISC-V GNU Debugger (GDB) software. The standard GDB

commands supported by RISC-V GDB can be used to debug. Since we have built the

application, already. We can start loading it to the Arty 35T board and test. The follow-

ing steps list out the actions to be taken,

5.4.1 Steps to run

Prerequisites

1. Install miniterm

$ sudo apt-get install python-serial

2. Open three terminals, one for each of the following

a. One terminal for UART terminal display.

b. Another for GDB server.

c. And the last one for OpenOCD.

Follow the steps below to set up and run programs7

1. In the first terminal, open a serial port to display output from UART.

$ sudo miniterm.py /dev/ttyUSB0 19200

7Open the terminals in the above mentioned order.

33

2. In the second terminal, launch OpenOCD with super user (sudo) permission. Please

ensure that, you are in the SHAKTI-SDK folder.

For example,

$ pwd
/home/user/shakti-sdk –––––-> you are in the right folder

Press reset in the board and run the following commands.

$ cd ./bsp/third_party/artix7_35t
$ sudo $(which openocd) -f ftdi.cfg

3. In the third terminal launch RISC-V GDB. Applications will be loaded and run in

this terminal

$ riscv32-unknown-elf-gdb
(gdb) set remotetimeout unlimited
(gdb) target remote localhost:3333
(gdb) file path/to/executable
(gdb) load
(gdb) c

Note:

1. "/dev/ttyUSB0" - ttyUSB means "USB serial port adapter" and the "0" ("0" or "1"

or whatever) is the USB device number.

2. For C class (64 bit) applications, please use riscv64-unknown-elf-gdb instead of

riscv32-unknown-elf-gdb.

3. The default baudrate is 19200 but if the target is AARDONYX the baud rate is

7668.

4. While using Aardonyx as a Target the corresponding pheriperal PIN MUX Register

Value has to be included in the application program.

For Example ,if one want to run applications of the PWM,in Aardonyx and want to

make use of all GPIO pins as PWM pins initialize Pin Mux Register with 0x0002AA80

5. The values of the Pin MUX register for different peripherals is mentioned under

Aardonyx in Device mapping section of the user manual.

5.4.2 Application flow

5.5 Running application in Standalone mode

Until now, we have been running Arty-35T board in a Debug mode. We need a Host PC to

build and run the application every time. In stand alone mode, the Arty-35t board when

34

RESET HARDWARE BOOT CORE INIT APPLICATION

DRIVER

MEM INIT REG INIT DRIVER INIT

i/o operation

4

Figure 6: Execution flow, after every reset

booted starts executing the code autonomously. The application is no longer down-

loaded from the PC through a debugger and executed. Instead, it is stored in the flash

memory. When the system starts, the boot loader loads the application from the flash

memory to the physical memory (RAM). Then the control transfers to the application

residing in RAM. This mode of running the application is usually used for standalone

systems.

5.5.1 Steps to generate standalone user application

The make upload command is used to build and upload the application to the flash au-

tomatically. The SHAKTI-SDK has a uploader tool that is used to load a content (such as

ELF) to flash, after building the image.

$ cd shakti-sdk

$ make upload PROGRAM= <bare metal appln> TARGET=artix7_35t

Interpreting above commands:

• PROGRAM is the new bare metal user application that is created. It is listed by

typing "make list_applns".

• TARGET= artix7_35t, refers to the board.8

8Currently SPI boot is available only in E-arty35T.

35

Appendices ASECTION

Device pin mapping

A.1 C-arty100T

Sl. No Pin Description Pin mapping Peripheral

1.1 GPIO0 CKIO0 (J4[1],IO - Lower) GPIO

1.2 GPIO1 CKIO1 (J4[3],IO - Lower)

1.3 GPIO2 CIIO2 (J4[5],IO - Lower)

1.4 GPIO3 CKIO3 (J4[7],IO - Lower)

1.5 GPIO4 CKIO4 (J4[9],IO - Lower)

1.6 GPIO5 CKIO5 (J4[11],IO - Lower)

36

Sl. No Pin Description Pin mapping Peripheral

1.7 GPIO6 CKIO6 (J4[13],IO - Lower)

1.8 GPIO7 CKIO7 (J4[15],IO - Lower)

1.9 GPIO8 CKIO8 (J2[1],IO - Higher)

1.10 GPIO9 CKIO9 (J2[3],IO - Higher)

1.11 GPIO10 CKIO10 (J2[5],IO - Higher)

1.12 GPIO11 CKIO11 (J2[7],IO - Higher)

1.13 GPIO12 CKIO12 (J2[9],IO - Higher)

1.14 GPIO13 CKIO13 (J2[11],IO - Higher)

1.15 GPIO14 CKIO26 (J4[2],IO - Lower)

1.16 GPIO15 CKIO27 (J4[4],IO - Lower)

2.1 SDA CK_SDA (J3[1]) I2C

2.2 SCL CK_SCL (J3[2])

3.1 UART0 TX J10 UART

3.2 UART0 RX J10

37

Sl. No Pin Description Pin mapping Peripheral

4.1 INTERRUPT 0 CKIO28 (J4[6],IO - Lower) PLIC

4.2 INTERRUPT 1 CKIO29 (J4[8],IO - Lower)

4.3 INTERRUPT 2 CKIO30 (J4[10],IO - Lower)

4.4 INTERRUPT 3 CKIO31 (J4[12],IO - Lower)

4.5 INTERRUPT 4 CKIO32 (J4[14],IO - Lower)

4.6 INTERRUPT 5 CKIO33 (J4[16],IO - Lower)

4.7 INTERRUPT 6 CKIO34 (J2[2],IO - Lower)

4.8 INTERRUPT 7 CKIO35 (J2[4],IO - Lower)

Table 6: C-arty100T Device pin map

38

A.2 E-arty35T

Sl. No Pin Description Pin mapping Peripheral

1.1 GPIO0 CKIO0 (J4[1],IO - Lower GPIO

1.2 GPIO1 CKIO1 (J4[3],IO - Lower)

1.3 GPIO2 CIIO2 (J4[5],IO - Lower)

1.4 GPIO3 CKIO3 (J4[7],IO - Lower)

1.5 GPIO4 CKIO4 (J4[9],IO - Lower)

1.6 GPIO5 CKIO5 (J4[11],IO - Lower)

1.7 GPIO6 CKIO6 (J4[13],IO - Lower)

1.8 GPIO7 CKIO7 (J4[15],IO - Lower)

1.9 GPIO8 CKIO8 (J2[1],IO - Higher)

1.10 GPIO9 CKIO9 (J2[3],IO - Higher)

1.11 GPIO10 CKIO10 (J2[5],IO - Higher)

1.12 GPIO11 CKIO11 (J2[7],IO - Higher)

1.13 GPIO12 CKIO12 (J2[9],IO - Higher)

39

Sl. No Pin Description Pin mapping Peripheral

1.14 GPIO13 CKIO13 (J2[11],IO - Higher)

1.15 GPIO14 CKIO26 (J4[2],IO - Lower)

1.16 GPIO15 CKIO27 (J4[4],IO - Lower)

2.1 SDA CK_SDA(J3[1]) I2C

2.2 SCL CK_SCL (J3[2])

3.1 UART0 TX J10 UART

3.2 UART0 RX J10

4.1 UART1 TX JC[7] - 3P

4.2 UART1 RX JC[8] - 3N

5.1 PWM 0 JD[1] PWM PINS

5.2 PWM 1 JD[2]

5.3 PWM 2 JD[3]

5.4 PWM 3 JD[4]

5.5 PWM 4 JD[7]

5.6 PWM 5 JD[8]

40

Sl. No Pin Description Pin mapping Peripheral

6.1 SPI0 CS JB[1] - 1P SPI0

6.2 SPI0 SCLK JB[2] - 1N

6.3 SPI0 MISO JB[3] - 2P

6.4 SPI0 MOSI JB[4] - 2N

7.1 SPI1 CS JB[7] - 3P SPI1

7.2 SPI1 SCLK JB[8] - 3N

7.3 SPI1 MISO JB[9] - 4P

7.4 SPI1 MOSI JB[10] - 4N

8.1 ADC 4 CKA0 Single ended ADC

8.2 ADC 5 CK A1

8.3 ADC 6 CK A2

8.4 ADC 7 CK A3

8.5 ADC 15 CK A4

41

Sl. No Pin Description Pin mapping Peripheral

8.6 ADC 0 CK A5

9.1 ADC 12P CK A6 Double ended ADC

9.2 ADC 12N CK A7

10.1 ADC 13P CK A8 Double ended ADC

10.2 ADC 13N CK A9

11.1 ADC 14P CK A10 Double ended ADC

11.2 ADC 14N CK A11

Table 7: E-arty35T Device pin map

42

A.3 Aardonyx

Sl. No Pin Description Pin mapping Peripheral

1.1 TEST_MODE SW[0] SWITCHES

1.2 BOOT_MODE[0] SW[1]

1.3 BOOT_MODE[1] SW[2]

2.1 PIN_TMS JA[1] JTAG

2.2 PIN_TDI JA[2]

2.3 PIN_TRST JA[4]

2.4 PIN_TDO JA[7]

2.5 PIN_TCK JA[8]

3.0 I2C0_SDA JB[1] I2C0

3.1 I2C0_SCL JB[2]

4.1 GPIO_14 JB[3] GPIO

4.2 GPIO_15 JB[4]

5.1 SPI1_NSS JC[1] SPI1

43

Sl. No Pin Description Pin mapping Peripheral

5.2 SPI1_MOSI JC[2]

5.3 SPI1_MISO JC[3]

5.4 SPI1_SCLK JC[7]

6.1 QSPI_NCS JD[1] QSPI

6.2 QSPI_IO[0] JD[2]

6.3 QSPI_IO[1] JD[3]

6.4 QSPI_CLK JD[4]

6.5 QSPI_IO[2] JD[9]

6.6 QSPI_IO[3] JD[10]

7.1 UART0_SOUT UART_RXD_OUT USB

7.2 UART0_SIN UART_TXD_IN

8.1 SPI0_SCLK A[0] SPI0

8.2 SPI0_NSS A[1]

44

9

Sl. No Pin Description Pin mapping Peripheral

8.3 SPI0_MOSI A[2]

8.4 SPI0_MISO A[3]

9.1 I2C1_SCL SCL I2C1

9.2 I2C1_SDA SDA

10.1 IO[0]* GPIO_0 / UART1_RX IO MUX

10.2 IO[1]* GPIO_1 / UART1_TX

10.3 IO[2]* GPIO_2 / UART2_RX IO MUX

10.4 IO[3]* GPIO_3/ UART2_TX / PWM_0

10.5 IO[4] GPIO_4

10.6 IO[5]* GPIO_5/ PWM_1

10.7 IO[6]* GPIO_6/PWM_2

10.8 IO[7] GPIO_7

10.9 IO[8] GPIO_8

9* denotes Pinmux pins

45

10

Sl. No Pin Description Pin mapping Peripheral

10.10 IO[9]* GPIO_9 /PWM_3

10.11 IO[10]* GPIO_10/ SPI2_NCS / PWM_4

10.12 GPIO_11 SPI2_MOSI

10.13 GPIO_12 SPI2_MISO

10.14 GPIO_13 SPI2_CLK

Table 8: Aardonyx Device pin map

10* denotes Pinmux pins

46

BSECTION

Understanding Pinmux

design

Example B.1

How to Configure a pinmux Register?

• A pair of bit, maps to a device pin. A device can have one or more pins.

• The bit pair can take values 00, 01, 10. Undefined behavior, for value 11.

• If all the pair of bit’s are zero. Then all the IO pins are configured as GPIO.

• If bits |7 |6| are set to 10. Then, PWM0 is enabled.

• If bits |7 | 6| are set to 01. Then, U2TX is enabled.

PinMux

Config Value

Bit Positions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 - - - - - GP13 GP12 GP11

01 - - - - - S2CK S2SO S2SI

10 - - - - - - - PWM5

Table 9: Aardonyx pinmux memory map (upper bytes)

47

PinMux

Config Value

Bit Positions

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

00 GP10 GP9 GP6 GP5 GP3 GP2 GP1 GP0

01 S2_CS - - -11 U2TX U2RX U1TX U1RX

10 PWM4 PWM3 PWM2 PWM1 PWM0 - - -

Table 10: Aardonyx pinmux memory map (lower bytes)

Note:

1. The above tables are used for configuring GPIO pins as I2C, PWM, UART & SPI.

2. For example UART needs two pins. Therefore, UART Tx and Rx pins are configured

to use the GPIO pins as UART. Similarly, SPI needs 4 pins.

3. Peripherals not mentioned in this table have their own dedicated pins as described

in section A.3.

48

CSECTION

Platform IO for SHAKTI

PlatformIO IDE is the next-generation integrated development environment for IoT [17].

C.1 Prerequisites

• Operating System :

– linux : Ubuntu 16.04 or later

– Windows : Windows 10

• Python Interpreter: Python 2.7 or Python 3.5+.

• Access to Serial Ports (USB/UART):

– Windows Users: Please check that you have correctly installed USB driver

from board manufacturer

– Linux Users : Please install 99-platformio-udev.rules

• Software : Visual Studio Code 2018-2019

• FPGA Board : Pio currently supports the below boards. 12

– Artix 7 100t

– Artix 7 35t
12Refer section 2 for board details

49

C.2 Installation

• Getting Platform Io for Visual Studio

– Download The Visual Studio from the following link : https://code.visualstudio.
com/?wt.mc_id=DX_841432

– Once you have downloaded the visual studio , go to the extensions tab , in

the search bar search for Platform IO IDE and install it .

– Restart the visual studio once you have installed the Platform IO extension.

– Open the platforms tab and install the platform IO framework using the fol-

lowing two methods

* Use the Advanced Installation by Clicking the Advanced Installation But-

ton -> Paste the link https://github.com/platformio/platform-shakti to

install the corresponding platform.

* Use the Command Line for installing the respective platform by typing

the following in the terminal pio platform install https://github.com/platformio/platform-

shakti

– Once the the above steps are complete restart the viisual studio to refresh the

IDE

C.3 Using SHAKTI SDK in PlatformIO IDE

The shakti software development kit is a ready to use kit where one can develop soft-

ware’s and projects on the respective boards available. The SHAKTI-SDK is embedded

into the PlatformIO IDE, along with risc-v tools. There by the application development

process is integrated into the PlatformIO IDE [18].

C.3.1 Getting Started with your first application

To have a clear understanding of how the software is built and deployed one can go

through a quick example by selecting Project Examples and follow the following steps

• Select the hello application from the drop down and press import.

• Once the project is imported , you can start building the project by going to project

tasks (Alien icon on left side)->Build

• To connect the board with IDE follow the instructions

• Once you have connected the board you can proceed by Clicking on Upload and

Monitor on the Project task column, which is followed by a pop up terminal dis-

playing the monitor rate also it uploads the program automatically.

• To execute the corresponding program to the board go to Debug ->Start Debug-

ging or press F5 . This should insert a break point automatically and execute.

50

https://code.visualstudio.com/?wt.mc_id=DX_841432
https://code.visualstudio.com/?wt.mc_id=DX_841432

• The above two steps should upload the program and open the terminal displaying

the output "Hello World"

C.3.2 Creating a project from scratch

1. Start creating a project by doing the following

• New Project -> Enter Details in the boxes as below

– Project Name : Give any name of your choice

– Board : Choose appropriate board of your choice from drop down as

below

* Arty7 100t

* Arty7 35t

– Framework : By default it will choose SHAKTI-SDK , if not select SHAKTI-

SDK from dropdown

• Click Finish

2. Creating your first application When creating your first application one should

know where to put the files , hence please refer the below structure

• Once you have created appropriate files according to the above steps , Build

the project and acquire a elf output file so that you can upload to the board

and test.

• Use the "Upload and Monitor " Command copy the elf to the board and exe-

cute.

51

5SECTION

Bibliography

[1] N. Gala, A. Menon, R. Bodduna, G. S. Madhusudan and V. Kamakoti, "SHAKTI

Processors: An Open-Source Hardware Initiative," 2016 29th International Con-

ference on VLSI Design and 2016 15th International Conference on Embedded

Systems (VLSID), Kolkata, 2016, pp. 7-8.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7434907&
isnumber=7434885

[2] Design of the RISC-V instruction set architecture

https://riscv.org/specifications/

[3] SHAKTI Processor Program Open-source Processor Development Ecosystem

https://shakti.org.in

[4] shakti software development kit

https://gitlab.com/shaktiproject/software/shakti-sdk

[5] SHAKTI C class micro architecture design

https://gitlab.com/shaktiproject/cores/c-class

[6] SHAKTI E class micro architecture design

https://gitlab.com/shaktiproject/cores/e-class

[7] RISC-V cores

https://riscv.org/risc-v-cores/

[8] RISC V tool chain

https://gitlab.com/shaktiproject/software/riscv-tools

52

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7434907&isnumber=7434885
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7434907&isnumber=7434885
https://riscv.org/specifications/
https://shakti.org.in
https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/cores/c-class
https://gitlab.com/shaktiproject/cores/e-class
https://riscv.org/risc-v-cores/
https://gitlab.com/shaktiproject/software/riscv-tools

[9] Generated RISC V tool chain

https://gitlab.com/shaktiproject/software/shakti-tools

[10] Zephyr project and Zephyr OS kernel, [online], organization="Linux Foundation"

https://www.zephyrproject.org/what-is-zephyr/

[11] Program SHAKTI on Arty A7-35T

https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/
fpga/boards/artya7-35t/e-class/pre-built-mcs

[12] Program SHAKTI on Arty A7-100T

https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/
fpga/boards/artya7-100t/c-class/pre-built-mcs

[13] Arty A7-100T and 35T with RISC-V

https://www.digikey.in/en/product-highlight/x/xilinx/
arty-a7-100t-and-35t-with-risc-v

[14] SHAKTI E class SoC on Artix 35T

https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/
fpga/boards/artya7-35t/e-class

[15] SHAKTI C class SoC in Artix 100T

https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/
fpga/boards/artya7-100t/c-class

[16] Generated RISC V tool chain

https://gitlab.com/shaktiproject/software/shakti-tools

[17] PlatformIO extensions for VSCODE

https://platformio.org/

[18] SHAKTI support on PlatformIO

https://github.com/platformio/platform-shakti

[19] SHAKTI support on FreeRTOS

https://gitlab.com/shaktiproject/software/FreeRTOS

53

https://gitlab.com/shaktiproject/software/shakti-tools
https://www.zephyrproject.org/what-is-zephyr/
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-35t/e-class/pre-built-mcs
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-35t/e-class/pre-built-mcs
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-100t/c-class/pre-built-mcs
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-100t/c-class/pre-built-mcs
https://www.digikey.in/en/product-highlight/x/xilinx/arty-a7-100t-and-35t-with-risc-v
https://www.digikey.in/en/product-highlight/x/xilinx/arty-a7-100t-and-35t-with-risc-v
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-35t/e-class
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-35t/e-class
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-100t/c-class
https://gitlab.com/shaktiproject/cores/shakti-soc/tree/master/fpga/boards/artya7-100t/c-class
https://gitlab.com/shaktiproject/software/shakti-tools
https://platformio.org/
https://github.com/platformio/platform-shakti
https://gitlab.com/shaktiproject/software/FreeRTOS

	Proprietary Notice
	Release Information
	Brief Introduction to SHAKTI
	Processors
	E-class
	C-class

	Tapeouts
	RIMO
	Risecreek
	Aardonyx

	Software
	SHAKTI-SDK
	PlatformIO IDE
	Arduino IDE
	Supported Operating systems

	Board Details
	Development boards
	Board Availability
	Documentation

	Board setup
	Powering the board
	Setting up the Debugger
	Debug interface over Xilinx FTDI (recommended)

	Programming SHAKTI
	Prerequisites
	Tool Installation
	Programming E-arty35t RTL bitstream onto the FPGA
	Programming C-arty100t RTL bitstream onto the FPGA

	SoC Device Information
	Device memory map
	E-arty35T memory map
	C-arty100T memory map
	Aardonyx memory map

	Software Development Flow
	SHAKTI-SDK Architecture
	Board Support Package
	shakti-tools
	Software
	Makefile

	Setting up the SHAKTI-SDK
	Pre-requisites
	Download the SHAKTI-SDK repository
	Download the SHAKTI-TOOLS repository
	Setting up SHAKTI Tool-chain
	Update the SDK or TOOLS

	Application Development
	Steps to add a new application to SHAKTI-SDK
	My first program !
	Build
	Run

	Running application in Debug mode
	Steps to run
	Application flow

	Running application in Standalone mode
	Steps to generate standalone user application

	Appendices
	Device pin mapping
	C-arty100T
	E-arty35T
	Aardonyx

	Understanding Pinmux design
	Platform IO for SHAKTI
	Prerequisites
	Installation
	Using SHAKTI SDK in PlatformIO IDE
	Getting Started with your first application
	Creating a project from scratch

	Bibliography

