
SHAKTI Processors Overview
RISE Lab

IITM

1

Agenda

● Introduction to Shakti Processors.
● Variants of Shakti
● Shakti SDK
● Shakti Peripherals

2

Genesis of SHAKTI

▪ SHAKTI is an IIT-Madras coordinated initiative to develop a family of open source
processors ranging from microcontrollers to server-grade multi-core processors.

▪ Today the SHAKTI initiative is building a comprehensive silicon ecosystem that will
provide industry-grade open source processors, AI/ML accelerators, communication
fabrics, interconnects and storage controllers.

▪ 5 startups spun off from this initiative.

3

Shakti - Journey

● Exploring ISA
● Approached by UCB to

adopt RISC-V.
● Defined 3 major classes
 of cores : E-Class,
 C-Class & I Class.

SHAKTI was born

● RISECREEK:
 - Tapeout of C-class
 on Intel’s 22nm FFL

● RIMO:
 - Tapeout of C-class
 on SCL’s 180nm

Tape outs

 SHAKTI gets official
 funding, and India
 Microprocessor
 Development
 Program (IMDP) begins.
Incore Startup spinoff from
Shakti

Funding from MeiTY

● IGCAR adopts SHAKTI
● ISRO adopts SHAKTI
● Thales funds SafeRV
● Moushik:

○ (an E-class based SoC)
is taped-out at SCL
180nm

Industry adoption

4

2013 2017 2018 2019

Shakti - Timeline

National level challenge
was launched to design
innovative solutions
based on SoCs
designed by SHAKTI .

Swadeshi 𝛍P
Challenge

Three more startups spin off
from Shakti

● Mindgrove
● Securweave
● Vyoma

Startups Secure

● Shaktimaan - AI
accelerator

● I-class 1.0

Accelerate

5

2020 2021 2022

● Secure Shakti
●Tape in for IISU at SCL
● Fifth startup, Shakra

-

2023 2024

● IP enhancements
● I-class enhancements
● C-Class enhancements
● Tape out of C - Class SoC
● P & V extension for C-Class

Enhancements

Shakti Ecosystem

6

Open Source
Baseline

Cores
Interconnects

and Fabrics

Complete Design
to Layout Flow

FPGA + SDK +
IDE

Domain
Specific Cores

Peripheral
Device IPs

About RISC-V

● RISC-V was originated by researchers from UC Berkeley in 2010. 2014 is
when the standard was made open.

● RISC-V (pronounced “risk-five”) is an open source implementation of a
RISC (Reduced Instruction Set Computing) based Instruction Set
Architecture.

● RISC-V is open under BSD license, permitting any person or group to
build RISC-V based hardware and software at no licensing cost.

● Learnt from the predecessor RISC ISAs.
● A Real ISA, capable of enabling hardware implementations and not

only for simulation or binary translation.
● Provides “no” micro-architecture mandate and avoids over

architecting for a particular technology (ASIC or FPGA).
7

Why RISC-V

● Openness (Open Standard, freely licensed)
● Modular architecture - 32 bit, 64 bit instruction set & variety of

extensions for features like floating point, vector operations, PSIMD, Bit
manipulation, etc.

● Flexibility - easy customization and optimization both software and
hardware for specific use cases.

● Designed for pipelined efficiency - pipeline stages can be optimized
based on the application.

● Visibility - More visibility into the codebase
● Future-proof - AI will generate future software and hardware.

8

Why Shakti

● Customizable Shakti Core variants.
● Multicore Shakti for high performance applications.
● Secure Shakti Core to protect the system from booting to runtime.
● Availability of peripheral IP cores(UART, SPI, QSPI, I2C, GPIO, TIMER, PWM,

WATCHDOG TIMER, RTC, etc.)
● Cryptographic Accelerators for SHA, AES, ECC and RSA are available.
● ShaktiMAAN to accelerate the performance of Shakti (optimized for executing

AI/ML workloads).
● Variety of Shakti cores are tested with different FPGA boards.
● Four successful Tapeouts.

9

SHAKTI Overview

10

▪ Base Processors
▫ E-Class : 3 stage micro-controller
▫ C-Class : 6 stage micro-processor
▫ I-Class : 12 stage OoO processor
▫ Core IP blocks

▫ Single and Double IEEE 754 FPU
▫ Parameterized Branch Predictors
▫ Parameterized Caches.

▪ Interconnects and Fabrics
▫ Protocols

▫ AXI-4, AXI4 Lite
▫ TileLink U/H/C

▫ Fabrics - Custom, Crossbar,Mesh, AI
accelerator optimized fabrics

▪ Dev/Verification platforms
▫ AAPG - Random Assembly Generator
▫ Core & SoC Verification
▫ RISC-V ISA Compliance

▪ Design Flow
▫ FPGA - Xilinx, Altera
▫ ASIC: Cadence, Synopsys, Mentor

▪ Peripheral IPs
▫ I2C, xSPI, qSPI, JTAG, UART, PWM, GPIO

controller, PLIC, Watchdog, GP Timer.
▫ Memory - SDRAM, BootROM, TCM, DMA.

▪ SW Stack
▫ OS : Linux, FreeRTOS, Zephyr, Nuttx.
▫ SDK and IDE (Arduino & Platform IO)

#
#
#
#

SHAKTI Design Portfolio

11

The E-Class Core

E-Class Micro-Arch

13

E-Class Micro-Controller Core

14

Overview
▪ In-order 3 stage 32/64 bit

microcontroller supporting a
subset of RISC-V ISA.

▪ Low area and power
consumption - operational freq.
of < 400MHz.

▪ Optimized variants for FPGA
based soft-cores.

▪ AXI4/AXI4-Lite/TileLink
peripherals supported

▪ Positioned against ARM’s M
class cores (Cortex Mx Series)

Specifications
▪ Open source IP supporting RV*IMAC.
▪ Supports Machine and User-modes only.

User-mode trap handling is optional.
▪ Push button flow to generate variants and

subsets of ISA.
▪ Optimized sequential Multiplier and Divider for

ASICs and FPGAs
▪ OpenOCD based SoC debug support through

JTAG.
▪ OS Ports: FreeRTOS, Zephyr.

Target Domains: IoT devices, Edge Devices, Robotic Control, Smart cards

PPA
▪ Uses <3K LUT on a 7-series Xilinx FPGA.
▪ DMIPS/MHz: <1

Moushik SoC & EVK

15

Moushik SoC

The C-Class Core

C-Class Micro Architecture

17

Optional Modules:
● Branch Predictor
● Return Address Stack
● Instruction Cache
● Data Cache
● Floating Point Unit
● PTWalk +TLBs (only when

Supervisor enabled)

C-Class Micro-Processor

18

Overview
▪ An in-order 6-stage 64-bit

core supporting the entire
stable RISC-V ISA.

▪ Targets mid-range compute
systems: 500MHz-1+GHz.

▪ Supports RISC-V Linux,
secure L4, Nuttx.

▪ Variants for low-power and
high-performance.

▪ Positioned against ARM’s
Cortex A35/A55

Specifications
▪ Supports RISC-V ISA: RV64IMAFDC.
▪ Compatible with latest privilege spec of RISC-V ISA

and supports the sv39/48 virtualization scheme.
▪ Single and Double Precision Floating point units

compliant with IEEE-754.
▪ Supports the OpenOCD based debug environment

through JTAG.
▪ Includes a High performance branch predictor with

a Return-Address-Stack.
▪ Caches: upto 16KB Instruction and Data caches.
▪ Includes operand bypass for better performance.
▪ Boots risc-v linux os.

Target Domains: Reliable Computing, Secure Computing, IoT & Edge Computing hubs,
Auto/Aerospace/Industrial Controls

PPA
▪ Uses <20K LUT on a 7-series

Xilinx FPGA.
▪ DMIPS/MHz: 1.72
▪ Coremarks/MHz : 2.91

Other Tapeouts demonstrated

19

● ASIC : RISECREEK
● Manufacturer: Intel
● Date of Shipment: July 2018
● Technology Node: 22nm

FinFet
● Die Size: 4 x 4 mm2
● Functional IOs: 324
● Packaging: BGA
● Core Voltage: 0.75V
● IO Voltage: 1.8V

● ASIC : RIMO
● Manufacturer: SCL
● Date of Shipment: October

2018
● Technology Node: 180nm

CMOS
● Die Size: 12 x 12 mm2
● Functional IOs: 138
● Packaging: CQFP
● Core Voltage: 1.8v
● IO Voltage: 1.8V / 3.3V

FPGA Based SoC Templates

Board Support

Shakti based SoCs are supported on
Multiple Boards

● Nexys Video
● AC701
● VCU118
● Aldec
● proFPGA
● ZC702.
● Arty 100T & Arty 35T
● Genesys
● VC707

For SP2020 Hackathon, SoCs (Pinaka,
Parashu & Vajra) built for Arty 100T &
Arty 35T were used by 70+ teams. 21

I Class

22

Shakti I-Class 2.0 : Overview

23

● 64-bit superscalar, out-of-order RISC-V core for general purpose applications

○ One of the first OoO processors from India (soon to be open-source)

● RV64GC: integer, mul/div, atomics, single/double precision FP (IEEE 754),

compressed, ZiFencei, ZiCSR

● 4-wide out-of-order processor, 12-stage integer pipeline

● Supervisor mode sv39, supports RISC-V Linux

● AXI4 interface

● OpenOCD based debug through JTAG (debug 1.0) and FPGA log support

● Hardware Performance Monitors

● Configurable core, implementation in Bluespec System Verilog

I-Class Architecture

24

Multicore Shakti

25

Multicore Shakti
● Connects N number of Shakti C-class cores.
● Fully supports Atomic spec (A extension) of RISCV - used to implement locks in multicore systems.
● Cache coherence: MESI protocol, implementation from flute
● 16kB L1-I and 16kB L1-D Caches.
● 256kB L2 cache.
● CLINT Peripheral /hart timer.
● Inter processor Interrupts.
● AXI4 interface
● OpenOCD based debug through JTAG (RISCV Debug1.0 with JTAG based per hart debugging support)
● Configurable core, implementation in BSV
● SoC tried out on Aldec and profpga
● Simulation support
● Target Applications:

○ Desktop, Server, Mobiles, etc.

26

Multicore Shakti

27

Secure Shakti

Outline

29

● Security is a major concern
● Advancement in Technology also resulted in increase in

vulnerabilities.
● Defence and Aerospace – results in massacre effects.
● Threats from Device power on to any run time malware

attacks needs to be handled.
● Shakti, having many variants to cater to all categories

starting from simple embedded application to complex
server applications.

Secure SHAKTI

30

Secure Shakti

● C class with Cryptographic accelerators.
● Secures the system from bootkit, rootkit & malware

vulnerabilities.
● Three levels of protection.

○ Hardware high assurance boot
○ OpenSBI and Secure u-boot
○ Hypervisor

●

31

Hardware High Assurance Boot

● Complete implementation in hardware as it is the first level
of trust and to have better performance.

● Protects system during boot time.
● Detects and prevents execution of modified binaries.
● Mitigates unauthorised firmware from running on the

device.
● Requires all the intended executables to be signed using

cryptographic hash function & public key algorithm.
● Host system has private key being to sign the binaries.
● Processor uses the public key to verify the signature.

32

Hardware High Assurance Boot

● Signed binary is created by computing cryptographic hash
and the same is encrypted using private key.

● When Executable is being prepared on the host system, the
hash value is also computed.

● When loading the executable, processor reads the binary
image with signature.

● Signature is verified by computing the hash of the program
along with decryption using the public key.

● If both the signatures are matching, the executable code
doesn’t have any vulnerability and taken for the next stage.

33

Open SBI and Secure u boot

● Second level of verification in the chain of trust.
● Software based verification.
● open SBI, opensource RISCV Supervisor Binary Interface,

runs at higher privilege level.
● Initialise hardware & allow lower privilege levels like OS &

calls.

34

Open SBI and Secure u boot

● U-Boot, open source primary boot loader, package
instructions to boot OS kernel.

● Performs software based hash verification.
● Kernel images which boots the kernel is signed.
● The verification is similar to first level of chain of trust except

the all the computations are done in software.
● After successful verification, the untampered kernel is used

to boot the kernel.

35

Hypervisor

● First two levels Security features makes sure there is not
major security attacks to OS.

● Protects the system against runtime vulnerabilities.
● Protects the sensitive memory regions (critical code and

data areas) of the kernel.
● Prevents unauthorized privilege escalations.
● Makes sure that security critical hardware settings are

immutable.
● When hacker tries to access protected areas, hypervisor

detects and blocks the access and report the same to UI.
36

ShaktiMAAN

 ShaktiMAAN

38

● Accelerator for AI/ML + other
matrix based workloads.

● Connected on AXI bus.
● Design time configurable TOPS,

buffer sizes and datapath width.
● SoC has C-Class as the controller.
● Custom CISC ISA
● C based Software Framework for developing applications.
● Implementation proven on FPGA. Demonstrated simple applications

written with software framework. Speedup of 50x and above
depending on design configurations.

Application Development

Outline

40

● Shakti SDK Features
● Shakti SDK Architecture
● Shakti Tools
● Drivers for Peripherals
● Pinmux
● OS
● Manuals

Shakti SDK Features

41

● Open-source software development platform for
SHAKTI.

● Clean separation between boot, drivers, core and
application layers.

● Driver support for PWM, QSPI, SPI, PLIC, CLINT, UART,
I2C, GPIO, RTC, Watchdog, GPTimer and XADC.

● Multiple sensors connected and proven with
SHAKTI-SDK.

● Standalone and Debug mode supported.

Shakti SDK Features

42

● Multilevel logging, Flash programming & Dynamic memory
management supported.

● Single place for bare-metal application development,
projects and benchmarks.

● SDK extendable for any FPGA board.
● SDK can be adapted to RTOS.
● Visual Studio Code IDE

○ Using Platform IO Extension
● Arduino IDE support.
● ESP8266 & ESP 32, FTDI, External Flashes and many

sensors integrated.

Shakti SDK Architecture

43
https://gitlab.com/shaktiproject/software/shakti-sdk

https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/software/shakti-sdk

Shakti Peripherals IPs

Drivers for Peripherals

45

UART
● Configurable Baud rate

○ Upto 115200
● Programmable character

size.
● Programmable stop bits,

parity bits.
● Read / Write options

○ Polling based
○ Interrupt based

● Integrated with ESP chip,
4G Modem, Lora & Zigbee.

PWM
● FPGA board Clock speed -

50MHz
● Configurable PWM

○ Clock divisor
○ Period
○ Duty Cycle

● Tested upto 7.5 MHz
PWM frequency

● Timer mode support.

Peripheral Drivers

46

I2C
● Supports Standard

(100kHz) and Fast mode
I2C (400kHz).

● Master Mode support.
● Configurable clock speed.
● 7 bit addressing.
● Supports

○ Polling based
○ Interrupt based

SPI
● Standard SPI.
● Configurable clock speed

(Tested upto 12.5MHz).
● Supports both 3 wire and

4 wire interface.
● Programmable clock

polarity(CPOL) and phase
(CPHA)

● Programmable data size
from 1 - 32 bits.

Peripheral Drivers

47

PLIC
● RISC-V compatible

interrupt controller.
● Registers editable at bit

level.
● Default and vector

interrupts supported.
● Priority can be configured.
● Complete driver support

with examples

CLINT
● Configure timer at tick

level.
● Interrupt mode

supported.
● Complete driver support

with examples

Peripheral Drivers

48

GPIO
● 32 GPIO’s.
● 16 dedicated GPIOs, routed

through PMOD.
● Remaining 16 GPIOs can be

pin muxed.
● Few GPIO pins can be

configured for external
interrupt.

● Manys sensors verified and
examples present in SDK.

XADC
● Xilinx On Chip ADC

completely supported.
● Examples for On Chip

temperature and
electrical parameters.

● Examples for Dedicated
and Auxiliary ADC pins

Peripheral Drivers

49

GP Timer
● 32 bit General Purpose

Timer.
● Supports

Up/Down/Up-down
Counters.

● Also supports PWM.
● Captures the input.
● Continuous Counter mode.

Watchdog Timer
● 32 bit Watchdog timer.
● Prevents the core from Stalling

during code execution.
● Supports hard reset as well as

interrupt mode.
● When the active bit is not

triggered, the SoC will get reset
on timeout.

PinMux

50

● By default all pins are configured as GPIO
● GPIO pins can be assigned to different peripheral

devices
● Pin mux register has to be configured to enable a

peripheral function on a pin.
● Pin mux register is 32 bits.
● Python based script is available to easily configure

the pin mux functionality and generate bsv code.

OS

51

● RTOS

○ Free RTOS
○ Zephyr
○ Nuttx.

● Linux OS

Startups

References:

Shakti Documentation: https://shakti.org.in/documentation.html

Shakti Blogs: https://blogshakti.org.in/

Shakti FPGA files: https://gitlab.com/shaktiproject/sp2020

Shakti SDK: https://gitlab.com/shaktiproject/software/shakti-sdk

Shakti on Arduino:
https://blogshakti.org.in/how-to-print-hello-world-on-shakti-using-arduino-ide/

Linux on Shakti: https://gitlab.com/shaktiproject/software/linux-on-shakti

Platform IO: https://registry.platformio.org/platforms/platformio/shakti

Shakti cores: https://gitlab.com/shaktiproject/cores

Shakti peripherals: https://gitlab.com/shaktiproject/uncore/devices

53

https://shakti.org.in/documentation.html
https://blogshakti.org.in/
https://gitlab.com/shaktiproject/sp2020
https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/software/linux-on-shakti
https://registry.platformio.org/platforms/platformio/shakti
https://gitlab.com/shaktiproject/cores

Queries

Thank You !

