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What is an ISA ?

High-level swap(size_t v[], size_t k)
language {

program size_t temp;
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\ Binary machine  00000000001101011001001100010011

' language 00000000011001010000001100110011
| program 00000000000000110011001010000011
f

[ (for RISC-V) 00000000100000110011001110000011

00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111




What does any ISA Specification define

High-level swap(size_t v[], size_t k)
. . language | )
e Instruction Encodings o) S
vik] = v[k+1];
v[k+1] = temp;

o Eg. instruction addi -> ‘00010011
. . 1
e Regqister files

o Eg. x0-x31

Assembly
language

o Control and Status Registers program
(for RISC-V)

e Modes of operation
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RISC-V Implementation & Why we need it ?

Numerous processor implementations based on RISC-V

o IITM’s SHAKTI Class of processors, CDAC’s VEGA, SiFive’s Rocket, Freedom, OpenHW'’s
CV32E40P, CVA6 and many more

The specification defined in terms of hardware design is known as its
implementation

Isolation of architecture from implementation

In order to bring out a bug free implementation, verification engineers are
expected understand the architecture and basic underlying principles governing
the implementation

o Pipelining: Hazards, Memory hierarchy, Branch predictions, In order, Out-of-order processors

How to verify them ?




Verification - Catch bugs!

SPECIFICATION

Demonstrates functional correctness

Based on the same specification :() I
Bug escapes to silicon is costly

More than 50% of resource (time,

money, manpower) spent on
verification

IMPLEMENTATION




SHAKT]I Verification

e SHAKTI Verification is based on open-source tools and the framework
is maintained commonly for various classes of RISC-V cores like
C-Class, E-Class, I-Class maximizing reuse.

e Comprehensive suites of directed and random assembly tests are
simulated on the Bluespec generated verilog design using Verilator

e Processor verification incorporates ISA level state checking at every
instruction execution along with end of test memory check.

e Self-checking frameworks are developed to aid simulation and FPGA
level verification

<SHAKTI



SHAKTI Verification Levels

= Block level
= UVM methodology
o Interaction with DUT
using CoCoTb libraries
= Core level
o RISC-V core verification
o Framework generating
and simulating
directed/random tests
7 « | = System level
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(o) verification

Non-
» Cacheable

y "
Real Time 12C, SPI, QSPI, FlexBu;
[ AR ] [Clock module ] [ xSPI ]}[Expansio B

System level Block level Core level 8

Proprietary DSPs
d

an
other third party IP




Generic Verification Methodology

Test Plan Test Bench Regression
Preparation Development Setup

e Feature e Test Bench e Shift left e Coverage closure
extraction Components approach o Code_ and

e Test scenarios e Constraint random e Continuous functional

e Checking/ test sequences Integration (Cl) coverage
Coverage oftest e Coverage e 100% holes
feature definition explained




Verification Challenges

CREATING SUFFICIENT TESTS TO VERIFY THE DESIGN (Coverage
Closure)

KNOWING MY VERIFICATION COVERAGE

MANAGING THE VERIFICATION PROCESS

TIME TO ISOLATE AND RESOLVE A BUG

TIME TO DISCOVER THE NEXT BUG

2014
DEFINING APPROPRIATE COVERAGE METRICS mERLS
m2018
Other = 2020
0% 5% 10% 15% 20% 25% 30% 35% 40%

Design Projects

Ref: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study



Why Verification is Important ?!

Intel’s FDIV Bug 1994 | $475 million for replacements ~ $752
million in 2020.

Intel's Cougar Point 2011 | $300 million in lost sales and $700
chipset problem million in repairs

Spectre and Meltdown 2018 | ~ $18 billion
Secutiry Flaws Affect
Intel, ARM, and AMD

Refs:

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

https://www.anandtech.com/show/4 14 3/the-source-of-intels-cougar-point-sata-bug

https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigation-cost-by-device-type/
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Emerging Trends
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Test Suite Development

RISC-V Verification Components & Generation

RISC-V Toolchain for
Test Compilation

% Riscy LY 1) Reference Model
P A | _—Development
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Test Suite  Processor | =
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e Comparison

Regression &
Coverage Collection



Verification Components - Test Development

Test Suite Development
& Generation

e For RISC-V core verification purposes, self checking
assembly tests are used

o riscv-tests
o riscv-arch-tests

o Implementation specific tests
e RISC-V Random test generation

o Shakti’'s AAPG
RISCV-Torture
Google’s RISCV-DV
MicroTesk
Force-RISCV

O O O O
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Verification Components - Test Compilation (SW)

RISC-V Toolchain for
Test Compilation

o

e riscv-gnu-toolchain
e For custom extensions, toolchain support has
to be added

15


https://github.com/riscv/riscv-gnu-toolchain

Verification Components - Reference Model

Reference Model

. . _ Development
e Spike, the Instruction Set Simulator is used as

the reference model
e Alternate commercial support: riscvOVPSIim

16



Verification Components - Test Bench

e Shakti's C-Class employs log based processor
state comparison and UVM based verification
environment Test Bench for
e Processor State: Processor State
o XPR, FPR and CSR. mem on loads/stores Comparison

17



Verification Components - Regression

e Shift-Left Approach

e Design and verification starts in parallel

e \Verification support incrementally added based
on the design feature addition

e Design merge triggers smoke regression

e Nightly regression using Continuous
Integration

Regression &
Coverage Collection
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SHAKTI SoC Verification Summary
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SHAKTI C-Class System Level Verification

SHAKTI SoC Design

e SHAKTI C-Class is connected to the

SoC subsystem using the AX14

¢/ AXl4 Bus

Y ) interface
' : e SHAKTI C-Class core Verfication with
Assembly test cases
SHAKTI C-Class kﬁ\/ e Memory Mapped Peripherals and
i All Peripherals and

<):> Accelerators accelerators

<SHAKTI



CoCoTb SubSystem

Driver

!

Scoreboard

SoC Design

AX|4 Bus

A

CoCoTb Peripheral

CoCoTb Peripheral
Monitors and BFMs

SHAKTI SoC Sub-System Level Verification

AXl4 interface as a common
driver component

By generating various AXI
transactions to the
sub-system, the SoC is being
verified.

The transactions can be
towards verifying a Single IP or

the whole interactions with the

subsystem
CoCoTb VIPs used for
Verification =

<SHAKTI



Python based SHAKTI SoC Verification

Constraint random tests ,2(
Test bench components E{

Reference model development B{

Coverage definition ,2(

Continuous integration E/
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