SHAKTI C-Class SoC Verification

Lavanya Jagadeeswaran
Project Manager | SHAKTI Lab | RISE Group

https://www.linkedin.com/in/lavanya-jagadeeswaran/

This Session

Training Info

Write back
data

Register File

PC-Gen and CSR

Operand
Fetch

Mis-Prediction Flush

Decode

Bypass
Logic

Memory Write Back
EOE Bt Access Unit unit
Fetch
Trap flush
Instruction
TLB Mi
> Cache ISS
TLB Non-
X » Cacheable
3 Access.
. lCache Miss
AXI4 / AXI4-Lite / TileLink-U B
ﬂ \ 1\ y
Real Time |/ |i2C, SPI, QSPI, || FlexBu Proprietary DSPs
[EARTA] [Clock module]1: [XSPI J}[Expansio] and
’ other third party IP
System level Block level Core level

What is an ISA ?

High-level swap(size_t v[], size_t k)
language {

program size_t temp;

(in C) temp = v[k];

p =
v[k] = v[k+1];
vik+1] = temp;

Application |

Operating @

Compiler | System

] Instruction Set

Architecture Assembly L 5
Instr. Set Proc. | I/O system language s11i x6, x11, 3
program add x6, x10, x6
. e . (for RISC-V! 1d x5, 0(x6)
Digital Design) 14 x7. 8(x6)
sd x7, 0(x6)
Circuit Design sd x5, 8(x6)
jalr x0, 0(x1)

" |

'}QQ\\oa\\O i e N\

*,:\e‘“s sof,

%

\ Binary machine 00000000001101011001001100010011

' language 00000000011001010000001100110011
| program 00000000000000110011001010000011
f

[(for RISC-V) 00000000100000110011001110000011

00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

What does any ISA Specification define

High-level swap(size_t v[], size_t k)
. . language |)
e Instruction Encodings o) S
vik] = v[k+1];
v[k+1] = temp;

o Eg. instruction addi -> ‘00010011
. . 1
e Regqister files

o Eg. x0-x31

Assembly
language

o Control and Status Registers program
(for RISC-V)

e Modes of operation

Binary machine
language
program

(for RISC-V)

001010000001100110
110011001010000C
110011001110 011
00000100011
00100011
00001000000001100111

RISC-V Implementation & Why we need it ?

Numerous processor implementations based on RISC-V

o IITM’s SHAKTI Class of processors, CDAC’s VEGA, SiFive’s Rocket, Freedom, OpenHW'’s
CV32E40P, CVA6 and many more

The specification defined in terms of hardware design is known as its
implementation

Isolation of architecture from implementation

In order to bring out a bug free implementation, verification engineers are
expected understand the architecture and basic underlying principles governing
the implementation

o Pipelining: Hazards, Memory hierarchy, Branch predictions, In order, Out-of-order processors

How to verify them ?

Verification - Catch bugs!

SPECIFICATION

Demonstrates functional correctness

Based on the same specification :() I
Bug escapes to silicon is costly

More than 50% of resource (time,

money, manpower) spent on
verification

IMPLEMENTATION

SHAKT]I Verification

e SHAKTI Verification is based on open-source tools and the framework
is maintained commonly for various classes of RISC-V cores like
C-Class, E-Class, I-Class maximizing reuse.

e Comprehensive suites of directed and random assembly tests are
simulated on the Bluespec generated verilog design using Verilator

e Processor verification incorporates ISA level state checking at every
instruction execution along with end of test memory check.

e Self-checking frameworks are developed to aid simulation and FPGA
level verification

<SHAKTI

SHAKTI Verification Levels

= Block level
= UVM methodology
o Interaction with DUT
using CoCoTb libraries
= Core level
o RISC-V core verification
o Framework generating
and simulating
directed/random tests
7 « | = System level
¢ 1 """""" leAxfl{ T il T N4 = Simulation & FPGA based
(o) verification

Non-
» Cacheable

y "
Real Time 12C, SPI, QSPI, FlexBu;
[AR] [Clock module] [xSPI]}[Expansio B

System level Block level Core level 8

Proprietary DSPs
d

an
other third party IP

Generic Verification Methodology

Test Plan Test Bench Regression
Preparation Development Setup

e Feature e Test Bench e Shift left e Coverage closure
extraction Components approach o Code_ and

e Test scenarios e Constraint random e Continuous functional

e Checking/ test sequences Integration (Cl) coverage
Coverage oftest e Coverage e 100% holes
feature definition explained

Verification Challenges

CREATING SUFFICIENT TESTS TO VERIFY THE DESIGN (Coverage
Closure)

KNOWING MY VERIFICATION COVERAGE

MANAGING THE VERIFICATION PROCESS

TIME TO ISOLATE AND RESOLVE A BUG

TIME TO DISCOVER THE NEXT BUG

2014
DEFINING APPROPRIATE COVERAGE METRICS mERLS
m2018
Other = 2020
0% 5% 10% 15% 20% 25% 30% 35% 40%

Design Projects

Ref: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

Why Verification is Important ?!

Intel’s FDIV Bug 1994 | $475 million for replacements ~ $752
million in 2020.

Intel's Cougar Point 2011 | $300 million in lost sales and $700
chipset problem million in repairs

Spectre and Meltdown 2018 | ~ $18 billion
Secutiry Flaws Affect
Intel, ARM, and AMD

Refs:

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

https://www.anandtech.com/show/4 14 3/the-source-of-intels-cougar-point-sata-bug

https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigation-cost-by-device-type/

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://www.anandtech.com/show/4143/the-source-of-intels-cougar-point-sata-bug
https://www.statista.com/statistics/800258/worldwide-meltdown-spectre-potential-mitigation-cost-by-device-type/

Emerging Trends

80%
70%
60%

) 50%

8]

Q

o

a 40%

(=

oD

7]

8 30%

20%

10%

0%

Ref: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

VHDL

Verilog

.

Vera

Verification _,,
in Python! 2016

= 2020

=
‘ Next Year
= I

1 ‘- n

System C SystemVerilog Specman e C/C++ Accellera PSS Python OTHER
Testbench

ASIC Verification Language Adoption

** Multiple answers possible

Test Suite Development

RISC-V Verification Components & Generation

RISC-V Toolchain for
Test Compilation

% Riscy LY 1) Reference Model
P A | _—Development

I// \\\ E .

Test Suite Processor | =
Development & Test Compilation {_ state S====P PASSIFAIL

. Generation | . , \‘?9'“”3"”9/ f 4
Cr— N4 — Test Bench for
3 (Instruction Set 4 : Processor State

e Comparison

Regression &
Coverage Collection

Verification Components - Test Development

Test Suite Development
& Generation

e For RISC-V core verification purposes, self checking
assembly tests are used

o riscv-tests
o riscv-arch-tests

o Implementation specific tests
e RISC-V Random test generation

o Shakti’'s AAPG
RISCV-Torture
Google’s RISCV-DV
MicroTesk
Force-RISCV

O O O O

14

Verification Components - Test Compilation (SW)

RISC-V Toolchain for
Test Compilation

o

e riscv-gnu-toolchain
e For custom extensions, toolchain support has
to be added

15

https://github.com/riscv/riscv-gnu-toolchain

Verification Components - Reference Model

Reference Model

. . _ Development
e Spike, the Instruction Set Simulator is used as

the reference model
e Alternate commercial support: riscvOVPSIim

16

Verification Components - Test Bench

e Shakti's C-Class employs log based processor
state comparison and UVM based verification
environment Test Bench for
e Processor State: Processor State
o XPR, FPR and CSR. mem on loads/stores Comparison

17

Verification Components - Regression

e Shift-Left Approach

e Design and verification starts in parallel

e \Verification support incrementally added based
on the design feature addition

e Design merge triggers smoke regression

e Nightly regression using Continuous
Integration

Regression &
Coverage Collection

18

SHAKTI SoC Verification Summary

Training Info

Write back
data

Register File

PC-Gen and CSR

Operand
Fetch

Mis-Prediction Flush

Decode
and Operand
Fetch

Bypass
Logic

Memory : Write Back
Access Unit i unit

Trap flush
Instruction
TLB Mi
> Cache ISS
TLB Non-
» Cacheable
Access.
lCache Miss
AXI4 / AXI4-Lite / TileLink-U B
ﬂ Y 1\ 4
Real Time |/ |i2C, SPI, QSPI, || FlexBu Proprietary DSPs
[EARTA] [Clock module]1: [XSPI J}[Expansio] and
’ other third party IP
System level Block level Core level

19

SHAKTI C-Class System Level Verification

SHAKTI SoC Design

e SHAKTI C-Class is connected to the

SoC subsystem using the AX14

¢/ AXl4 Bus

Y) interface
' : e SHAKTI C-Class core Verfication with
Assembly test cases
SHAKTI C-Class kﬁ\/ e Memory Mapped Peripherals and
i All Peripherals and

<):> Accelerators accelerators

<SHAKTI

CoCoTb SubSystem

Driver

!

Scoreboard

SoC Design

AX|4 Bus

A

CoCoTb Peripheral

CoCoTb Peripheral
Monitors and BFMs

SHAKTI SoC Sub-System Level Verification

AXl4 interface as a common
driver component

By generating various AXI
transactions to the
sub-system, the SoC is being
verified.

The transactions can be
towards verifying a Single IP or

the whole interactions with the

subsystem
CoCoTb VIPs used for
Verification =

<SHAKTI

Python based SHAKTI SoC Verification

Constraint random tests ,2(
Test bench components E{

Reference model development B{

Coverage definition ,2(

Continuous integration E/

References

- RISC-V History: https://riscv.org/about/history/
- RISC-V Specifications https://If-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications

- Computer Organization and Design: The hardware / software interface - By David A. Patterson and John L. Hennessey
- The RISC-V Reader: An Open Architecture Atlas authored by David Patterson, Andrew Waterman
- SHAKTI AAPG: https://qitlab.com/shaktiproject/tools/aapg

- riscv-dv: https://aithub.com/aoogle/riscv-dv

- riscv-tests: https://aithub.com/riscv/riscv-tests

- riscv-torture: https://github.com/ucb-bar/riscv-torture

- spike: https://qithub.com/riscv/riscv-isa-sim

- CoCoTb: https://www.cocotb.orag/
- UART CoCoTb Ext; https://github.com/alexforencich/cocotbext-uart

https://riscv.org/about/history/
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://gitlab.com/shaktiproject/tools/aapg
https://github.com/google/riscv-dv
https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture
https://github.com/riscv/riscv-isa-sim
https://www.cocotb.org/
https://github.com/alexforencich/cocotbext-uart

Thank You

