
RISC-V GDB

TUTORIAL

Developed by: SHAKTI Development Team @ iitm ’20

https://shakti.org.in

0.1 Proprietary Notice

Copyright c 2020, Shakti @ IIT Madras.

All rights reserved. Information in this document is provided “as is”, with all faults.

Shakti @ IIT Madras expressly disclaims all warranties, representations, and conditions of
any kind, whether express or implied, including, but not limited to, the implied warranties or
conditions of merchantability, fitness for a particular purpose and non-infringement.

Shakti @ IIT Madras does not assume any liability rising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
indirect, incidental, special, exemplary, or consequential damages.

Shakti @ IIT Madras reserves the right to make changes without further notice to any products
herein.

0.2 Release Information

Version Date Changes

0.2 Initial release

0.3 11-6-21 set command example added

RISC-V GDB Tutorial

Table of contents
0.1 Proprietary Notice 2
0.2 Release Information 3

1.1 Introduction 5

1.2 Steps to Use GDB 5

2. Commands at the start of GDB 6
2.1 File 6
2.2 Load 6
2.3 Target Remote 7

3. Commands for executing programs using GDB 7
3.1 Continue command 7
3.2 Jump command 8
3.3 Step command 8
3.4 Stepi command 9
3.5 Set commands 10

3.5.1 Set variable command 10
3.5.2 Set value in a memory mapped register 11

4. Commands for Break points 12
4.1 Break command 12
4.2 Info breakpoints command 13
4.3 Clear command 14
4.4 Disable command 15
4.5 Delete command 17
4.6 Enable command 17

5. Commands to Display information 19
5.1 Display command 19
5.2 Print command 21
5.3 Info address command 21
5.4 Info registers command 22
5.5 Info functions command 23
5.6 Info line command 25
5.7 Info variables command 25
5.8 Info symbol command 26
5.9 Info types command 27

1.1 Introduction
GDB can be used to examine the contents of memory and registers while executing a program,
thereby enabling one to debug a program. This is done by using gdb commands to
● Start executing program
● Stop or pause execution at specified conditions
● Examine the contents of registry or memory locations
● Alter contents or registry or memory location
This tutorial briefly explains about using GDB to debug a program and about the GDB
commands.

1.2 Steps to Use GDB
1. Compile the program.
2. Start GDB

For RISC-V 64 bit use
riscv64-unknown-elf-gdb

For RISC-V 32 bit use
riscv32-unknown-elf-gdb

3. Specify the program to be debugged
file <program to be debugged >

4. Connect to remote target
target remote <address:port number>

5. Load the file to memory
load

6. Set breakpoints
break <filename>:<line number>

7. Execute the program
continue
Or
jump <address>

8. Step through the program
stepi

9. Exit GDB
quit or q

2. Commands at the start of GDB

2.1 File
Specifies the program to be debugged

Syntax
file <FILE>
file <path/to/the/file>

Description
● Use FILE as a program to be debugged.
● The FILE is read for its symbols, for getting the contents of the memory.
● If FILE cannot be found as specified, your execution directory path ($PATH) is searched for a

command of that name.

Known Restrictions
N/A

Example
In this example the file hello.shakti is read from the
/scratch2/shakti/shakti-sdk/software/Example/uart_applns/hello/output/
directory

(gdb) file
/scratch2/shakti/shakti-sdk/software/Example/uart_applns/hello/output/hello.s
hakti
Reading symbols from
/scratch2/shakti/shakti-sdk/software/Example/uart_applns/hello/output/hello.s
hakti...
(gdb)

2.2 Load
Loads the program into memory of the target system and prepares for execution. Used after the file
command.

Syntax
load

Description
N/A

Known Restrictions
N/A

Example

(gdb) load
Loading section .text.init, size 0x1c2 lma 0x80000000
Loading section .tohost, size 0x48 lma 0x80001000
Loading section .text, size 0x1018 lma 0x80001048
Loading section .rodata, size 0x1b0 lma 0x80002060
Start address 0x80000000, load size 5074
Transfer rate: 11 KB/sec, 1268 bytes/write.

2.3 Target Remote
A remote system connected to gdb via a serial line or network connection. This command tells gdb to use
its own remote protocol over a medium for debugging. In the current case, we are debugging the program
in the local machine.

Syntax
target remote [address:port number]

Description
● address, address of the machine in which the program is running
● port, number used to debug

Known Restrictions
N/A

Example

(gdb) target remote localhost:3333

3. Commands for executing programs using GDB

3.1 Continue command
Continues running the program until the next breakpoint or error.

Syntax
continue / c

Description
NA

Known Restrictions
NA

Example

(gdb) c
Continuing.

3.2 Jump command
Jumps to the specified address. The debugger resumes program execution at that point unless it
encounters a breakpoint there.

Syntax
jump <*addr>

Description
addr Address of the instruction to jump to.

Known Restrictions
NA

Example

(gdb) jump *0x1001002e
Continuing at 0x1001002e.

3.3 Step command
Steps from one function to another

Syntax
step / s

Description
NA

Known Restrictions

NA

Example

(gdb) load
Loading section .text, size 0x44 lma 0x10010000
Loading section .data, size 0x10 lma 0x10010044
Start address 0x0000000010010000, load size 84
Transfer rate: 2 KB/sec, 42 bytes/write.
(gdb) s
Single stepping until exit from function _start,
which has no line number information.
0x000000001001002e in loop ()
(gdb) s
Single stepping until exit from function loop,
which has no line number information.
0x0000000010010000 in _start ()
(gdb) s
Single stepping until exit from function _start,
which has no line number information.
0x000000001001002e in loop ()
(gdb)

3.4 Stepi command
Steps into assembler instructions, into any function calls.

Syntax
stepi / si

Description
● This command executes a machine instruction. When the instruction contains a function call, the

command steps into the function being called.
● For multithreaded applications, the stepi command is used to step inside the current thread one

machine instruction, while putting all other threads on hold.

Known Restrictions
NA

Example

(gdb) file software/Example/uart_applns/hello/output/hello.shakti
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from
software/Example/uart_applns/hello/output/hello.shakti...
(gdb) load
Loading section .text.init, size 0x5e lma 0x80000000
Loading section .text, size 0x3eaa lma 0x80000060
Loading section .rodata, size 0xeb8 lma 0x80003f10
Loading section .eh_frame, size 0x3c lma 0x80004dc8
Loading section .sdata, size 0x28 lma 0x80004e04
Start address 0x80000000, load size 20004
Transfer rate: 5 KB/sec, 3334 bytes/write.
(gdb) stepi
0x80000002 in _start ()
(gdb) si
0x80000004 in _start ()
(gdb) si
0x80000006 in _start ()

3.5 Set commands
Set commands changes the value associated with a variable, memory address, or expression that is
accessible according to the scope and visibility rules

3.5.1 Set variable command

Sets the value to the variable

Syntax
set variable = [expression/value]

Description
The set variable command evaluates the specified expression and assigns the new value.

Known Restrictions

● If you do not specify expression/value, debugger variables are set to void, while program variables
do not change.

Example
We load a program sample.elf in the spiking folder.

(gdb) file sample.elf
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Load new symbol table from "sample.elf"? (y or n) y
Reading symbols from sample.elf...
(gdb) load
Loading section .text, size 0xae lma 0x10010000
Loading section .data, size 0xa4 lma 0x100100b0
Loading section .sdata, size 0x4 lma 0x10010154
Start address 0x0000000010010000, load size 342
Transfer rate: 3 KB/sec, 114 bytes/write.
(gdb) si
0x0000000010010004 9 while (flag);
(gdb) si
0x0000000010010008 9 while (flag);
(gdb) si
0x000000001001000a 9 while (flag);
(gdb) print string
$1 = "This Is $hakti, The 1st Ever 'Made In India' Computer Chip"
(gdb) print flag
$2 = 1
(gdb) set flag =2
(gdb) print flag
$3 = 2
(gdb)

3.5.2 Set value in a memory mapped register
Sets the assigned value to memory location or memory mapped register
Syntax

set <address> = <value>

Description
NA

Known Restrictions
NA

Example

(gdb) file ./software/examples/uart_applns/hello/output/hello.shakti
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from ./software/examples/uart_applns/hello/output/hello.shakti...
(gdb) load
Loading section .text.init, size 0x5e lma 0x80000000
Loading section .text, size 0x3730 lma 0x80000060
Loading section .rodata, size 0xfc8 lma 0x80003790
Loading section .sdata, size 0x58 lma 0x80004758
Start address 0x0000000080000000, load size 18350
Transfer rate: 6 KB/sec, 4587 bytes/write.
(gdb) set *((char *)0x11304)=67 #set the address to char value 67 (alphabet C)
(gdb) x/x 0x11304 #Printing the hex equivalent in the address
0x11304: 0x00000043
(gdb) x/c 0x11304
0x11304: 67 'C'#Printing the char value in the address
(or)
(gdb) set {short}0x11300=0xa3
(gdb) x/hx 0x11300
0x11300: 0x00a3
(gdb) set {short}0x11304=66

4. Commands for Break points

4.1 Break command
Creates a breakpoint at a specified line, address

Syntax
b
break [Function Name]
break [filename]:[Line Number]
break [Address]

Description

● Function Name,when specified, the break command will set a breakpoint at the beginning of the
specified function

● Line Number,when specified, the break command will set a breakpoint at a given location inside
the specified file. If no file is specified, the current source file will be used.

● Address, when specified, the break command will set a breakpoint at a given address. The
address should be a valid C/C++ expression (e.g. a hexadecimal number starting with 0x).

Known Restrictions

Do not confuse the [Function name] and the [Address] forms of the break command. For instance,
If you attempt to set a breakpoint at address 0x40138c, the following command will fail,

(gdb)break 0x80001074

This happens because GDB will interpret 0x80001074 as a function name rather than an address. The
correct syntax to set a breakpoint at address 0x80001074 is,

(gdb)break *0x8000107

Example

(gdb) b start
Breakpoint 1 at 0x80000c78: file
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c, line 85.
(gdb) b main
Breakpoint 2 at 0x80000068: file ./ds3231_sensor.c, line 61.
(gdb) b *0x80000f6e

Breakpoint 3 at 0x80000f6e: file
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c, line 180.
(gdb) b *0x80001074
Breakpoint 4 at 0x80001074: file
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c, line 224.
(gdb) b *0xfef407a3
Breakpoint 5 at 0xfef407a3
(gdb)
#Five breakpoints set at start, main and addresses 0x80000f6e,0x80001074 &
0xfef407a3

4.2 Info breakpoints command
Displays information about breakpoints.

Syntax

info breakpoints
info breakpoints [Numbers]

Description
Number, when the info breakpoints command is invoked without any arguments, it displays
information about all breakpoints. When one or more numbers are specified, only the
breakpoints matching the specified numbers will be displayed.

Known Restrictions
NA

Example

(gdb) info breakpoints
No breakpoints or watchpoints.

(gdb) b main
Breakpoint 1 at 0x80000068: file ./ds3231_sensor.c, line 61.
(gdb) b start
Breakpoint 2 at 0x80000c78: file
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c, line 85.
(gdb) b *0x800033b2
Breakpoint 3 at 0x800033b2: file
/home/shakti-sdk-dev/bsp/drivers/plic/plic_driver.c, line 441.

(gdb) info breakpoint
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000080000068 in main at
./ds3231_sensor.c:61
2 breakpoint keep y 0x0000000080000c78 in start

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:85
3 breakpoint keep y 0x00000000800033b2 in configure_interrupt

at
/home/shakti-sdk-dev/bsp/drivers/plic/plic_driver.c:441
(gdb)

4.3 Clear command

Deletes a breakpoint at a specified location.

Syntax
clear [Location]

Description
Specifies the location of a breakpoint that should be removed. If not specified, GDB will try to remove a
breakpoint in the current location.

Known Restrictions
NA

Example

(gdb) info breakpoint #displays the breakpoint available
Num Type Disp Enb Address What
11 breakpoint keep y 0x0000000080000c78 in start

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:85
12 breakpoint keep y 0x00000000fef407a3

(gdb) clear *0x00000000fef407a3 #deletes breakpoint 12

(gdb) info breakpoint
Deleted breakpoint 12 Num Type Disp Enb Address What
11 breakpoint keep y 0x0000000080000c78 in start at

/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:85

(gdb)

4.4 Disable command

Disables all breakpoints or specified breakpoints.

Syntax
disable
disable [Number]
disable [Number1] [Number2] ... [NumberN]
disable breakpoints …

Description
When the disable command is invoked without any arguments, it disables all the breakpoints. When one
or more numbers are specified, only the breakpoints matching the specified numbers will be disabled.

Known Restrictions
NA

Example

(gdb) info breakpoint
No breakpoints or watchpoints.
(gdb) b I2cStop
Breakpoint 1 at 0x80001556: file
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c, line 440.
(gdb) b main
Breakpoint 2 at 0x80000068: file ./ds3231_sensor.c, line 61.
(gdb) b *0x80001b0c
Breakpoint 3 at 0x80001b0c: file /home/shakti-sdk-dev/bsp/libs/util.c, line
209.
(gdb) b *0x800034c4
Breakpoint 4 at 0x800034c4: file
/home/shakti-sdk-dev/bsp/drivers/pwm/pwm_driver.c, line 93.

(gdb) info breakpoint
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000080001556 in I2cStop

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:440
2 breakpoint keep y 0x0000000080000068 in main at
./ds3231_sensor.c:61
3 breakpoint keep y 0x0000000080001b0c in delay_loop

at
/home/shakti-sdk-dev/bsp/libs/util.c:209

4 breakpoint keep y 0x00000000800034c4 in set_pwm_control_register
at

/home/shakti-sdk-dev/bsp/drivers/pwm/pwm_driver.c:93

(gdb) disable 2 #disables one breakpoint

(gdb) info breakpoint
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000080001556 in I2cStop

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:440
2 breakpoint keep n 0x0000000080000068 in main at
./ds3231_sensor.c:61
3 breakpoint keep y 0x0000000080001b0c in delay_loop

at
/home/shakti-sdk-dev/bsp/libs/util.c:209
4 breakpoint keep y 0x00000000800034c4 in set_pwm_control_register

at
/home/shakti-sdk-dev/bsp/drivers/pwm/pwm_driver.c:93

(gdb) disable #disables all the breakpoints

(gdb) info breakpoint
Num Type Disp Enb Address What
1 breakpoint keep n 0x0000000080001556 in I2cStop

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:440
2 breakpoint keep n 0x0000000080000068 in main at
./ds3231_sensor.c:61
3 breakpoint keep n 0x0000000080001b0c in delay_loop

at
/home/shakti-sdk-dev/bsp/libs/util.c:209
4 breakpoint keep n 0x00000000800034c4 in set_pwm_control_register

at
/home/shakti-sdk-dev/bsp/drivers/pwm/pwm_driver.c:93
(gdb)

4.5 Delete command
Deletes specific breakpoints or all breakpoints.

Syntax

delete

delete [number]

Description

● number, When the delete is invoked without any arguments, it deletes all breakpoints.
When one or more numbers are specified, only the breakpoints matching the specified
numbers will be deleted.

Known Restrictions
NA

Example

(gdb) info breakpoints
Num Type Disp Enb Address What
3 breakpoint keep y <PENDING> start
4 breakpoint keep y <PENDING> 0x8000022c
5 breakpoint keep y 0x000000008000009c in main at ./uart_test.c:51
6 breakpoint keep y <PENDING> 0x8000045c
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) info breakpoints
No breakpoints or watchpoints.

4.6 Enable command

Enables all breakpoints or specified breakpoints.

Syntax
enable
enable [Number]
enable [Number1] [Number2] ... [NumberN]

Description
● Number,when the enable is invoked without any arguments, it enables all breakpoints. When one

or more numbers are specified, only the breakpoints matching the specified numbers will be
enabled.

Known Restrictions
NA

Example

(gdb) info breakpoint
Num Type Disp Enb Address What
1 breakpoint keep n 0x0000000080001556 in I2cStop

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:440
2 breakpoint keep n 0x0000000080000068 in main at
./ds3231_sensor.c:61
3 breakpoint keep n 0x0000000080001b0c in delay_loop

at
/home/shakti-sdk-dev/bsp/libs/util.c:209
4 breakpoint keep n 0x00000000800034c4 in set_pwm_control_register

at
/home/nambirajan/shakti-sdk-dev/bsp/drivers/pwm/pwm_driver.c:93

(gdb) enable 4 #enables breakpoint no:4

(gdb) info breakpoint
Num Type Disp Enb Address What
1 breakpoint keep n 0x0000000080001556 in I2cStop

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:440
2 breakpoint keep n 0x0000000080000068 in main at
./ds3231_sensor.c:61
3 breakpoint keep n 0x0000000080001b0c in delay_loop

at
/home/shakti-sdk-dev/bsp/libs/util.c:209
4 breakpoint keep y 0x00000000800034c4 in set_pwm_control_register

at
/home/nambirajan/shakti-sdk-dev/bsp/drivers/pwm/pwm_driver.c:93

(gdb) enable #enables all the breakpoints

(gdb) info breakpoint
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000080001556 in I2cStop

at
/home/shakti-sdk-dev/bsp/drivers/i2c/gpio_i2c.c:440
2 breakpoint keep y 0x0000000080000068 in main at
./ds3231_sensor.c:61
3 breakpoint keep y 0x0000000080001b0c in delay_loop

at
/home/shakti-sdk-dev/bsp/libs/util.c:209
4 breakpoint keep y 0x00000000800034c4 in set_pwm_control_register

at
/home/shakti-sdk-dev/bsp/drivers/pwm/pwm_driver.c:93
(gdb)

5. Commands to Display information
5.1 Display command

Displays the memory contents at a given address using the specified format.

Syntax

x /[Format] [Expression]
x [Address expression]
x /[Length][Format] [Address expression]

Description

Expression,specifies the expression that will be automatically evaluated and displayed after
each step.

Known Restrictions
NA

Format
If specified, allows overriding the output format used by the command. Valid format specifiers are:

● o - octal
● x - hexadecimal
● u - unsigned decimal
● t - binary
● f - floating point
● a - address
● c - char
● s - string

Example

(gdb) x/wx 0x80000000
0x80000000 <main>: 0xec221101
(gdb) x 0x80000000
0x80000000 <main>: 0xec221101
(gdb) x/c 0x80000000
0x80000000 <main>: 1 '\001'
(gdb) x/wx 0x80000000
0x80000000 <main>: 0xec221101

(gdb) x/2hx 0x80000000
0x80000000 <main>: 0x1101 0xec22
(gdb) x/gx 0x80000000
0x80000000 <main>: 0x87a21000ec221101
(gdb) x/s 0x80000000
0x80000000 <main>: "\001\021", <incomplete sequence \354>
(gdb) x/5bx 0x80000000
0x80000000 <main>: 0x01 0x11 0x22 0xec 0x00
(gdb) x/10x 0x8000084a
0x8000084a <_printf_+832>: 0x70e60001 0x74a67446 0x61097906
0x71598082
0x8000085a <printf+2>: 0xf022f406 0x3c231800 0xe40cfca4
0xec14e810
0x8000086a <printf+18>: 0xf41cf018 0x03043823

5.2 Print command
Prints the value of a given expression.

Syntax

Print [Expression]
Print {[type]}[Address]

Description
● Expression, specifies the expression that will be evaluated and printed. The expression

can include references to variables (e.g. i), registers (e.g. $eax) and pseudo-registers (e.g.
$pc).

● Note that if your expression refers to a local variable, you need to ensure that you have
selected the correct frame.

● Type/Address,this format allows explicitly specifying the address of the evaluated
expression and can be used as a shortcut to the C/C++ type conversion. E.g. *((int *)p) is
equivalent to {int}p

Known Restrictions
NA

Example

(gdb) print loop
$1 = {<text variable, no debug info>} 0x1001002e <loop>
(gdb)
$2 = {<text variable, no debug info>} 0x1001002e <loop>
(gdb) print *0x1001001e
$3 = 1943

(gdb)

5.3 Info address command

Displays the address of a given symbol

Syntax
info address [Symbol name]

Description
● Symbol name. specifies the symbol (function or variable) whose address should be displayed.
● The info address command produces similar output to the print& command. However, unlike

the print command it does not display the type information, but prints whether the symbol is a
function or a variable.

● Note that the program does not need to be running in order to use the info address command.
● In order to do the reverse operation (get a symbol name from address), use the info symbol

command.

Known Restrictions
NA

Example

(gdb) info address main
Symbol "main" is a function at address 0x80000098.
(gdb) print &main
$1 = (int (*)(void)) 0x80000098 <main>
(gdb)

5.4 Info registers command

Displays the contents of all processor registers

Syntax
info reg / i r / info registers
info all-registers / i all-registers
info registers [Register name]

Description
● info reg / i r / info registers,displays all the register values except the CSR

registers and the floating point registers.
● info all-registers,displays all the register values including the CSR registers and the

floating point registers.
● info registers [Register name],displays the value of the specified register.

Known Restrictions
NA

Example

(gdb) i r
ra 0x0 0x0
sp 0x0 0x0
gp 0x0 0x0
tp 0x0 0x0
t0 0x10010000 268500992
t1 0x0 0
t2 0x0 0
fp 0x0 0x0
s1 0x0 0
a0 0x0 0
a1 0x1020 4128
a2 0x0 0
a3 0x0 0
a4 0x1 1
a5 0x10010000 268500992
a6 0x0 0
a7 0x0 0
s2 0x0 0
s3 0x0 0
s4 0x0 0
s5 0x0 0
s6 0x0 0
s7 0x0 0
s8 0x0 0
s9 0x0 0
s10 0x0 0
s11 0x0 0
t3 0x0 0
t4 0x0 0
t5 0x0 0
t6 0x0 0
pc 0x10010008 0x10010008 <main+8>
(gdb) i r a0
a0 0x0000000000000000 0
(gdb) i r mie
mie 0x60000 393216
(gdb)

5.5 Info functions command

Displays the list of functions in the debugged program

Syntax
info functions
info functions [Regex]

Description
● Regex, if specified, the info functions command will list the functions matching the

regular expression regex.. If omitted, the command will list all functions in all loaded modules
(main program and shared libraries)

● Note that running the info functions command without arguments can produce a lot of output as
the list of all functions in all loaded shared libraries is typically very long.

Known Restrictions
NA

Example

(gdb) info functions
All defined functions:

File ./uart_test.c:
int main(void);

File
/home/risecreek/users/gitlab/shakti-sdk/shakti-tools/riscv64-unknown-elf/incl
ude/stdio.h:
int printf(const char *, ...);

File /home/risecreek/users/username/drivers/05_06_2020/sw/bsp/core/init.c:
void init(void);
void section_init();
void trap_init();

File /home/risecreek/users/drivers/05_06_2020/sw/bsp/core/traps.c:
void default_handler(uintptr_t, uintptr_t);
uintptr_t handle_trap(uintptr_t, uintptr_t);
---Type <return> to continue, or q <return> to quit---

(gdb) info functions printf
All functions matching regular expression "printf":

File
/home/risecreek/users/gitlab/shakti-sdk/shakti-tools/riscv64-unknown-elf/incl
ude/stdio.h:
int printf(const char *, ...);

File /home/risecreek/users/drivers/05_06_2020/iisu/sw/bsp/libs/printf.c:
void _printf_(const char *, va_list);
(gdb)

5.6 Info line command

Translates line numbers to addresses and vice versa.

Syntax
info line [File]:[Line]
info line [Function]
info line [File]:[Function]
info line *[Address]

Description
● File:Line,if this form is used, the info line command will display the starting and ending

addresses of the given source line.
● Function,if this parameter is used, the info line command will display the information about the

first source line of a given function.
● Address,if this parameter is used, the info line command will display the information about a

source line that corresponds to the specified address.

Known Restrictions
NA

Example

(gdb) info line *0x80000a44
Line 227 of "/home/username/shakti-sdk/bsp/drivers/uart/uart.c" starts at
address 0x80000a3e <set_uart_rx_threshold> and ends at 0x80000a4e
<set_uart_rx_threshold+16>.
(gdb)
(gdb)
(gdb) info line main
Line 49 of "./uart_test.c" starts at address 0x80000098 <main> and ends at
0x800000a0 <main+8>.
(gdb)

5.7 Info variables command

Displays the list of global/static variables present in the debugged program

Syntax
info variables
info variables [Regex]

Parameters
Regex, if specified, the info variables command will list the global/static variables matching the regex.
If omitted, the command will list all global/static variables in all loaded modules (main program and shared
libraries).

Example

(gdb) info variables
All defined variables:
File /home/username/shakti-sdk/bsp/core/init.c:
char *bss_end;
char *bss_start;
char *heap_end;
char *heap_start;
char *sbss_end;
char *sbss_start;
char *stack_end;
char *stack_start;

File /home/username/shakti-sdk/bsp/drivers/clint/clint_driver.c:
uint64_t *mtime;
uint64_t *mtimecmp;
---Type <return> to continue, or q <return> to quit---

(gdb) info variables start
All variables matching regular expression "start":

File /home/username/shakti-sdk/bsp/core/init.c:
char *bss_start;
char *heap_start;
char *sbss_start;
char *stack_start;

Non-debugging symbols:
0x0000000080002e38 __rodata_start
0x0000000080003c98 __data_start

5.8 Info symbol command

Displays the name of the symbol residing at a given address

Syntax
info symbol [Address]
info symbol [Expression]

Description
Address,specifies the address that will be searched for a symbol.
Expression,specifies an expression that will be evaluated to get the address. The expression can
contain pseudo-registers

Known Restrictions
NA

Example

(gdb) info symbol main
main in section .text
(gdb) print main
$1 = {<text variable, no debug info>} 0x80000000 <main>
(gdb) info symbol 0x80000000
main in section .text

5.9 Info types command

Displays the list of types defined in the currently loaded modules

Syntax
info types
info types [Regex]

Description
Regex, if specified, the info types command will list the types matching the regex. If omitted, the
command will list all types in all loaded modules (main program and shared libraries).

Known Restrictions
NA

Example

(gdb) info types
All defined types:

Non-debugging symbols:
0x0000000003fffdf6 _HEAP_SIZE
0x0000000003fffdf6 _STACK_SIZE
(gdb) info types [Regex]
All types matching regular expression "[Regex]":

File ../../../../riscv-gcc/libgcc/../gcc/config/riscv/riscv-opts.h:
24: enum riscv_abi_type;

35: enum riscv_code_model;
43: enum riscv_microarchitecture_type;

File ../../../../riscv-gcc/libgcc/../include/hashtab.h:
54: typedef int (*)(const void *, const void *) htab_eq;

File ../../../../riscv-gcc/libgcc/libgcc2.c:
complex double
complex float
complex long double
double
long double
long
long long
unsigned long long
unsigned long
unsigned short
signed char
unsigned char

--Type <RET> for more, q to quit, c to continue without paging--
unsigned int

File ../../../../riscv-gcc/libgcc/libgcc2.h:
132: typedef long long DItype;
128: typedef int SItype;
133: typedef unsigned long long UDItype;
123: typedef unsigned char UQItype;
129: typedef unsigned int USItype;

